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Aims of the Course

1. Discuss the fundamental techniques in Neural 
NetworksNetworks.

2. Discuss the fundamental structures and its learning 
algorithms.

3. Introduce the new models of NNs and its 
applications.

Neural Network is an intelligent numerical  
computation method.

Learning Outcomes
1. Understand the relation between real brains and simple 

artificial neural network models.
2 Describe and explain the most common architectures and2. Describe and explain the most common architectures and 

learning algorithms for Multi-Layer Perceptrons, Radial-
Basis Function Networks and Kohonen Self-Organising 
Maps.

3. Explain the learning and generalization aspects of neural 
network systems.

4. Demonstrate an understanding of the implementation4. Demonstrate an understanding of the implementation 
issues for common neural network systems.

5. Demonstrate an understanding of the practical 
considerations in applying neural networks to real 
classification, recognition, identification, approximation 
problems and control.



4/11/2011

3

Course Evaluation

1. Course Projects 40%

2. Final Exam 50%

3. Conference Paper 10%

Reference Books

• Haykin S., Neural Networks: A Comprehensive 
P ti H ll 1999Foundation., Prentice Hall, 1999.

• Hagan M.T., Dcmuth H.B. and Beale M., 
Neural Network Design, PWS Publishing Co., 
1996.
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Preliminaries

1. Matrices Algebra to Neural Network design 
d i l t tiand implementation.

2. MATLAB software for simulation. (NN 
toolbox is arbitrary).
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Introduction
1. What are Neural Networks?
2. Why are Artificial Neural Networks Worth2. Why are Artificial Neural Networks Worth 

Noting and Studying?
3. What are Artificial Neural Networks used for?
4. Learning in Neural Networks
5. A Brief History of the Field

2

6. Artificial Neural Networks compared with 
Classical Symbolic A.I.

7. Some Current Artificial Neural Network 
Applications
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What are Neural Networks?

1. Neural Networks (NNs) are networks of neurons 
such as found in real (i.e. biological) brains.such as found in real (i.e. biological) brains.

3

What are Neural Networks?

2. Artificial Neurons are crude approximations of the 
neurons found in real brainsneurons found in real brains.

4
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What are Neural Networks?

3. Artificial Neural Networks (ANNs) are networks 
of Artificial Neurons and hence constitute crudeof Artificial Neurons, and hence constitute crude 
approximations to parts of real brains.

5

What are Neural Networks?
4.   From a practical point of view, an ANN is just a 

parallel computational system consisting of many 
simple processing elements connected together insimple processing elements connected together in 
a specific way in order to perform a particular 
task.

6
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Why are Artificial Neural Networks 
Worth Noting and Studying?

1. They are extremely powerful computational devices.

2 Parallel Processing makes them very efficient2. Parallel Processing makes them very efficient.

3. They can learn and generalize from training data – so 
there is no need for enormous feats of programming.

4. They are particularly fault tolerant – this is equivalent to 
the “graceful degradation” found in biological systems.

7

5. They are very noise tolerant – so they can cope or deal 
with situations where normal symbolic (classic) systems 
would have difficulty.

6. In principle, they can do anything a symbolic or classic 
system can do, and more.

What are Artificial Neural Networks used for?

• Brain modeling : The scientific goal of building 
models of how real brains work This canmodels of how real brains work. This can 
potentially help us understand the nature of 
human intelligence, formulate better teaching 
strategies, or better remedial actions for brain 
damaged patients.

• Artificial System Building : The engineering

8

Artificial System Building : The engineering 
goal of building efficient systems for real world 
applications. This may make machines more 
powerful, relieve humans of tedious tasks, and 
may even improve upon human performance.
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Learning in Neural Networks

There are many forms of neural networks. Most operate by passing 
neural ‘activations’ through a network of connected neurons.

O f h f l f f l k i h i biliOne of the most powerful features of neural networks is their ability to 
learn and generalize from a set of training data. They adapt the 
strengths/weights of the connections between neurons so that the 
final output activations are correct.

There are three broad types of learning:
1. Supervised Learning (i.e. learning with a teacher)
2 Reinforcement learning (i e learning with limited feedback)

9

2. Reinforcement learning (i.e. learning with limited feedback)
3. Unsupervised learning (i.e. learning with no help)

There are most common learning algorithms for the most common 
types of neural networks.

A Brief History
• 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron 

model
• 1949 Hebb published his book The Organization of Behavior, in 

which the Hebbian learning rule was proposed.
• 1958 Rosenblatt introduced the simple single layer networks now 

called Perceptrons.
• 1969 Minsky and Papert’s book Perceptrons demonstrated the 

limitation of single layer perceptrons and almost the whole field 
went into hibernation.

• 1982 Hopfield published a series of papers on Hopfield networks.
• 1982 Kohonen developed the Self-Organising Maps that now bear 

his name

10

his name.
• 1986 The Back-Propagation learning algorithm for Multi-Layer 

Perceptrons was rediscovered and the whole field took off again.
• 1990s The sub-field of Radial Basis Function Networks is 

developed.
• 2000s The power of Ensembles of Neural Networks and Support 

Vector Machines becomes apparent.
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A Brief History
• 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron 

model

Warren S. McCulloch
(Nov., 16, 1898 – Sep., 24, 1969)
American neurophysiologist and cybernetician

11

W. McCulloch and W. Pitts, 1943 "A Logical Calculus of the Ideas Immanent 
in Nervous Activity". In :Bulletin of Mathematical Biophysics Vol 5, pp 115-
133 .

A Brief History
• 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron 

model

Walter Pitts
(23 April 1923 – 14 May 1969) 

12

At the age of 12 he spent three days in a library reading 
Principia Mathematica and sent a letter to Bertrand Russell
pointing out what he considered serious problems with the 
first half of the first volume.
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A Brief History
• 1949 Hebb published his book The Organization of Behavior The 

Organization of Behavior, in which the Hebbian learning rule was 
proposed.

Donald Olding Hebb
(July 22, 1904 – August 20, 1985) 

13

The Organization of Behavior

A Brief History
• 1958 Rosenblatt introduced the simple single layer networks now 

called Perceptrons.

Frank Rosenblatt
(11 July 1928 – 1971) 

14

2006  - LAWRENCE J. FOGEL
2007 - JAMES C. BEZDEK
2008 - TEUVO KOHONEN
2009 - JOHN J. HOPFIELD
2010 - MICHIO SUGENO
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A Brief History
• 1958 Rosenblatt introduced the simple single layer networks now 

called Perceptrons.

15

A Brief History
• 1969 Minsky and Papert’s book Perceptrons demonstrated the 

limitation of single layer perceptrons and almost the whole field 
went into hibernation.

Marvin Minsky 
(born August 9, 1927) 

Perceptrons

16

Seymour Papert
(born February 29, 1928)
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A Brief History
• 1982 Hopfield published a series of papers on Hopfield networks.

John Joseph Hopfield
(born July 15, 1933) 

17 A Hopfield Net

He was awarded the Dirac Medal of the ICTP in 2001. 

A Brief History
• 1982 Kohonen developed the Self-Organizing Maps that now bear 

his name.

Teuvo Kohonen
(born July 11, 1934) 

18 S.O.M

Self-Organizing 
Maps 

New ed.: 2001



4/11/2011

10

A Brief History
• 1982 Kohonen developed the Self-Organizing Maps that now bear 

his name.

19

S.O.M

A Brief History

• 1986 The Back-Propagation learning algorithm for Multi-Layer 
Perceptrons was rediscovered and the whole field took off again.

• 1990s The sub-field of Radial Basis Function Networks is 
developeddeveloped.

• 2000s The power of Ensembles of Neural Networks and Support 
Vector Machines becomes apparent.

20
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Artificial Neural NetworksArtificial Neural Networks

Lecture 3

Human Nervous System

• The human nervous system can be represented to 
three stages as the following block diagram:three stages as the following block diagram:

Receptors
Neural 

Network/
Brain

Effectors
Brain



4/11/2011

2

The Human Brain

• The middle block of last block-diagram (Brain)

Brains versus Computers

1. There are approximately 10 billion neurons in the human cortex, 
compared with 10 of thousands of processors in the most powerful 
parallel computers.

2 E h bi l i l i t d t l th d f th2. Each biological neuron is connected to several thousands of other 
neurons, similar to the connectivity in powerful parallel 
computers.

3. Lack of processing units can be compensated by speed. The typical 
operating speeds of biological neurons is measured in milliseconds 
(10-3 s), while a silicon chip can operate in nanoseconds (10-9 s).

4. The human brain is extremely energy efficient, using 
approximately 10-16 joules per operation per second whereas theapproximately 10 joules per operation per second, whereas the 
best computers today use around 10-6 joules per operation per 
second.

5. Brains have been evolving for tens of millions of years, computers 
have been evolving for tens of decades.
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Human Nervous System

• The real structure of the 
human nervous correspondinghuman nervous corresponding 
to last block-diagram.

• It contains the neurons to 
transfer the signal form the 
receptors to brain and vice-
versa to the effectors.

The Biological Neuron
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The Biological Neuron

Components of Biological Neuron

1. The majority of neurons encode their activations or outputs as a series of brief 
electrical pulses (i.e. spikes or action potentials).
2. The neuron’s cell body (soma) processes the incoming activations and converts
them into output activations.
3. The neuron’s nucleus contains the genetic material in the form of DNA. This
exists in most types of cells, not just neurons.
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Components of Biological Neuron
4. Dendrites are fibres which come from the cell body and provide the receptive 
zones that receive activation from other neurons.
5. Axons are fibres acting as transmission lines that send activation to other 
neurons.
6. The junctions that allow signal transmission between the axons and dendrites are
called synapses. The process of transmission is by diffusion of chemicals called
neurotransmitters across the synaptic cleft.

Level of Brain Organization

There is a hierarchy of interwoven levels of organization:
1. Molecules and Ions1. Molecules and Ions
2. Synapses
3. Neuronal microcircuits
4. Dendrite trees
5. Neurons
6. Local circuits
7 I t i l i it7. Inter-regional circuits
8. Central nervous system

The ANNs we study in this module are crude approximations to 
levels 5 and 6.
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The McCulloch and Pitts Neuron

This is a simplified model of real neurons 
known as a Threshold Logic Unit.

The McCulloch and Pitts Neuron

1. A set of synapses (i.e. connections) brings in activations from other 
neuronsneurons.

2. A processing unit sums the inputs, and then applies a non-linear 
activation function (i.e. squashing/transfer/threshold function).

3. An output line transmits the result to other neurons.
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The McCulloch and Pitts Neuron Equation
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The McCulloch and Pitts Neuron Analysis

• Note that the McCulloch-Pitts neuron is an extremely 
simplified model of real biological neurons. Some of its missing 
f t i l d bi i t d t t lifeatures include: non-binary inputs and outputs, non-linear 
summation, smooth thresholding, stochasticity, and temporal 
information processing.

• Nevertheless, McCulloch-Pitts neurons are computationally 
very powerful. One can show that assemblies of such neurons 
are capable of universal computationare capable of universal computation.



1

Artificial Neural NetworksArtificial Neural Networks

Lecture 4

1

Networks of McCulloch-Pitts Neurons

The McCulloch and Pitts (M_P) Neuron

2

sgn
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Networks of M-P Neurons
One neuron can’t do much on its own, but a net of these neurons …
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Networks of M-P Neurons
We can connect several number of McCulloch-Pitts neurons together, 
as follow:

w

Output layer

4

An arrangement of one input layer of McCulloch-Pitts neurons feeding 
forward to one output layer of McCulloch-Pitts neurons as above is 
known as a Perceptron.

Input layer
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Implementing Logic Gates with M-P Neurons

According to the McCulloch-Pitts Neuron properties we can use it to 
implement the basic logic gates.

Not
in out

1 0

0 1

And

In1 in2 out

1 1 1

1 0 0

0 1 0

OR

In1 in2 out

1 1 1

1 0 1

0 1 1

5

What should we do to implement or realize a logic gate, 
Not/AND/OR, by N.N.?

0 0 0 0 0 0

Implementing Logic Gates with M-P Neurons

What should we do to implement or realize a logic gate, 
Not/AND/OR, by N.N.?

All we need to do is find the appropriate synapses (connection) weights
and neuron thresholds to produce the right outputs corresponding to 
each set of inputs.

Two solutions can be introduced for this problem:

6

1. Analytically Approach

2. Learning Algorithms
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Find Weights Analytically for NOT
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Find Weights Analytically for XOR gate
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21

But, the 1st equation is not compatible with others.
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 2   w

0    

Find Weights Analytically for XOR gate

What is the solution?
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y
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New questions:

• How can compute the weights and thresholds?
• Is analytically solution reasonable and practical or not?
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A New Idea: Learning Algorithm

Linearly separable problems:

1 1

11
Not

0 1

0

1

-0.2 0 1
-0.2

0

1

AND

A New Idea: Learning Algorithm
Why is single layer neural networks capable to solve the linearly 
separable problems ?
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Learning Algorithm

What is the goal of learning algorithm?
We need a learning algorithm which it updates the weights wi (w) so 
that finally (at end of learning process) the input patterns lie on both 
id f th li d id d b th P tsides of the line decided by the Perceptron.

13

Step: 1 Step: 2 Step: 3

Learning Algorithm

Perceptron Learning Rule:
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Preparing the Perceptron for Learning
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15

2

b(t):  bias
y(t): Actual Response of N.N.

Preparing the Perceptron for Learning

1Training Data:
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16
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Learning Algorithm

1.  Initialization Set w(0)=rand. Then perform the following computatio
for  time step t=1,2,...

2. Activation At time step t, activate the Perceptron by applying 
input vector x(t) and desired response d(t)

3. Computation the actual response of  N.N.
Compute the actual response of the Perceptron
y(t) = sign ( w(t) · x(t)T )

4.  Adaptation of weight vector Update the weight vector of the 
perceptron

17

perceptron
w(t+1) = w(t)+ h(t)  [ d(t) - y(t) ]  x(t)

5. Continuation and return to 2.
1w y

1x

2x
2w

b

d

Learning Algorithm

Where or When  to stop?

 
 )2()2(
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d

dx

There are two approaches to stop the learning process:
1. Converging the generalized error to a constant value.
2. Repeat the learning process for predefined number.  

18
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Training Types

Two types of network training:

Sequential mode (on-line, stochastic, or per-pattern)
Weights updated after each pattern is presented
(Perceptron is in this class) 

Batch mode (off-line or per-epoch)
Weights updated after all pattern in a period is presented

19

1st Mini Project

1. By using the perceptron learning rule generate a N.N. to represent a 
NOT gate.

2. By using the perceptron learning rule generate a N.N. to represent a 
AND gateAND gate.

3. By using the perceptron learning rule generate a N.N. to represent a OR 
gate.

4. Please show that the generalized error converge to constant value after 
a learning process.

5. Please test the above N.N.s by testing data?
6. Please check the above N. N.s with data which added to noise.
7 R t th l i f b N N i b th ith d ith t

20

7. Repeat the learning process for above N.N.s in both with and without 
bias.

8. Please plot the updated weights.
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Activation Functions

Unipolar Binary Function

1

Unipolar Binary Function
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function is not differentiable.
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Unipolar Sigmoid Function
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Bipolar Binary Function
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Bipolar Flexible Function
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Bipolar Flexible Function
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Gaussian Function
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Gaussian Function
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Multi-layer Perceptrons

Multi-Layer Perceptron
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Feed Forward Equations
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Learning Rule?
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What are the learning rules or algorithms to tune the N.N. weights?

U i d L i Al ith

4

• Unsupervised Learning Algorithms

• Supervised Learning Algorithms



3

Learning Rules

What is the Goal of N.N. learning?

The learning algorithm introduces an approach to achieve 
the zero error signal. Where, Error Signal is:

)()()( kykdke 

Al h b l b b i d b i i i i h

5

Also, the above goal can be obtained by minimizing the 
following cost function. 
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Learning Rules

Which parameters have effect in optimizing the above 
cost function? wcost function? w
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Learning Rules

So, the N.N. can be optimized by minimizing the corresponding 
cost function with respect to the synaptic weights of network.cost function with respect to the synaptic weights of network.

)()()( kxkekw jj 

According to above explanation, Widrow and Hoff in 1960
proposed a new method to update the weights based on delta 
rule.

7

)()()( jj 

)()()()1( kxkekwkw jjj 

Learning Rules
Hebbian Learning rule:

Hebb’s postulate of learning is the oldest and most famous of all learning 
rules.
His theory can be rephrased as a two-part as follows:

1. If two neurons on either side of a synapse (connection) are 
activated simultaneously (i.e. synchronously), then the strength of that 
synapse is selectively increased.

8

2. If two neurons on either side of a synapse are activated 
asynchronously, then that synapse is selectively weakened or 
eliminated.
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Learning Rules
Mathematical Model of Hebbian Learning rule:

According to the Hebb’s postulate the synaptic weight has 

 )(),()( kxkyFkw jiij 

relation with pre-synaptic and post-synaptic activities.

As a special case, we can rewrite it as follow:



9

)()()( kxkykw jiij 

ijw

jx

Learning Rules

From this figure we can see that the repeated application of the 
input signal (pre-synaptic activity) xj leads to an exponential p g (p y p y) j p
growth that finally drives the synaptic weight into saturation. 

To avoid such a situation from arising, we need to impose a limit 
on the growth of synaptic weights. One method for doing this is to 
introduce a nonlinear forgetting factor into the formula for the 
synaptic adjustment (Kohonen, 1988):

10
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Back-Propagation Algorithm

We look for a simple method of training in which the weights are 
updated on a pattern-by-pattern basis (online method). 
The adjustments to the weights are made in accordance with theThe adjustments to the weights are made in accordance with the 
respective errors computed for each pattern presented to the 
network.
The arithmetic average of these individual weight changes over the 
training set is therefore an estimate of the true change that would 
result from modifying the weights based on minimizing the cost 
function E over the entire training set

11
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Back-Propagation Algorithm

•In words, gradient method could be thought of  as a ball rolling down 
from a hill: the ball will roll down and finally stop at the valley. 
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Gradient direction
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Gradient direction
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Back-Propagation Algorithm
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Back-Propagation Algorithm
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Back-Propagation Algorithm
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Back-Propagation Algorithm
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2nd Mini Project

1. By using the MLP and Hebbian learning rule generate a N.N. to 
represent the AND and XOR gatesrepresent the AND and XOR gates.

2. By using the MLP and Kohonen learning rule generate a N.N. to 
represent the AND and XOR gates.

3. By using the MLP and Back-Propagation learning rule generate a 
N.N. to represent the AND and XOR gates.

4. Please show that the generalized error converge to constant value 
after a learning process.

20

after a learning process.
5. Please test the above N.N.s by testing data?
6. Please check the above N.N.s with data which are added to noise.
7. Please plot the updated weights.
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Artificial Neural NetworksArtificial Neural Networks

Lecture 7

1

Some Notes on Back-Propagation 

Learning Rate
The smaller we make the learning-rate parameter  the smaller will 
the changes to the synaptic weights in the network be from one 
iteration to the next and the smoother will be the trajectory in weight 
space.
If, on the other hand, we make the learning-rate parameter  too 
large so as to speed up the rate of learning, the resulting large 
changes in the synaptic weights assume such a form that the network 
may become unstable (i.e., oscillatory). 
Solution: A simple method of increasing the rate of learning and yet 

idi h d f i bili i dif h d l l b

2

avoiding the danger of instability is to modify the delta rule by 
including a momentum term, as shown by’ (Rumelhart et al., 1986a)

)1()()()(  nwnynnw jiijji 
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Generalized  delta-rule
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Based on this relation, we may make the following insightful observations 
(Watrous, 1987; Jacobs, 1988; Goggin et al., 1989):

1. The current adjustment wij represents the sum of an exponentially weighted time 
series. For the time series to be convergent, the momentum constant must be 
restricted to the range 0= < 1. 

h i h b k i l i h i h

4

- When  is zero, the back-propagation algorithm operates without momentum. 
- Note also that the momentum constant  can be positive or negative, although 
it is unlikely that a negative  would be used in practice.
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Generalized  delta-rule
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2. When the partial derivative has the same algebraic sign on consecutive 
iterations, the exponentially weighted sum wji grows in magnitude, and 
so the weight wji is adjusted by a large amount. Hence the inclusion of 
momentum in the back-propagation algorithm tends to accelerate 
descent in steady downhill directions.

5

3. When the partial derivative has opposite signs on consecutive iterations, the 
exponentially weighted sum wji shrinks in magnitude, and so the weight wji is 
adjusted by a small amount. Hence the inclusion of momentum in the back-
propagation algorithm has a stabilizing effect in directions that oscillate in sign.

Sequential Mode and Batch Mode



Sequential Mode or Pattern Mode:
In the pattern mode of back-propagation learning, weight updating  
is performed after the presentation of each training data.
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Sequential Mode and Batch Mode



Batch Mode:
In the batch mode of back-propagation learning, weight updating is performed 

after the presentation of all the training examples that constitute an epoch.
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Sequential Mode and Batch Mode
From an “on-line” operational point of view, the pattern mode of training is 

preferred over the batch mode, because it requires less local storage for 
each synaptic connection.

Moreover given that the patterns are presented to the network in a randomMoreover, given that the patterns are presented to the network in a random 
manner, the use of pattern-by-pattern updating of weights makes the 
search in weight space stochastic in nature, which, in turn, makes it less 
likely for the back-propagation algorithm to be trapped in a local 
minimum. 

On the other hand, the use of batch mode of training provides a more 
accurate estimate of the gradient vector. 

8

* So, the training process can be started with batch mode and then it can be  
changed to sequential mode.



5

Stopping Criteria

• The back-propagation algorithm is considered to have converged when 
the Euclidean norm of the gradient vector reaches a sufficiently small 
gradient threshold

• The back-propagation algorithm is considered to have converged when 
the absolute rate of change in the average squared error (Eav) per epoch 
i ffi i tl ll

gradient threshold.

The drawback of this convergence criterion is that, for successful trials, 
learning times may be long.

9

is sufficiently small.

Typically, the rate of change in the average squared error is considered to be 
small enough if it lies in the range of 0.1 to 1 percent per epoch; 
sometimes, a value as small as 0.01 percent per epoch is used.

Stopping Criteria

• Another useful criterion for convergence is as follows. After each 
learning iteration, the network is tested for its generalization 
performance The learning process is stopped when the generalizationperformance. The learning process is stopped when the generalization 
performance is adequate.

10
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Initializing in Back-Propagation 

In Lee et al. (1991), a formula for the probability of premature saturation in 
back-propagation learning has been derived for the batch mode of updating, 
and it has been verified using computer simulation. The essence (core) of 
hi f l b i d f llthis formula may be summarized as follows:

1. Incorrect saturation is avoided by choosing the initial values of the 
synaptic weights and threshold levels of the network to be uniformly 
distributed inside a small range of values.
2. Incorrect saturation is less likely to occur when the number of hidden 
neurons is maintained low, consistent with a satisfactory operation of the 

11

network.
3. Incorrect saturation rarely occurs when the neurons of the network 
operate in their linear regions.

Note: For pattern-by-pattern updating, computer simulation results show 
similar trends to the batch mode of operation referred to herein

Heuristics for making the Back-
Propagation Algorithm Perform Better

1 A M L P trained with the back propagation algorithm may in general1. A M.L.P trained with the back-propagation algorithm may, in general,
learn faster (in terms of the number of training iterations required) when the 
asymmetric sigmoidal activation function are used in neuron model. than 
when it is non-symmetric.

)()(

12

)()( vv  Asymmetric function:
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Heuristics for making the Back-
Propagation Algorithm Perform Better

2. It is important that the desired values are chosen within the range of the 
sigmoid activation functions.
Otherwise, the back-propagation algorithm tends to drive the free , p p g g
parameters of the network to infinity, and thereby slow down the learning
process by orders of magnitude.
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Heuristics for making the Back-
Propagation Algorithm Perform Better

3. The initialization of the synaptic weights and threshold levels of the 
network should be uniformly distributed inside a small range The reasonnetwork should be uniformly distributed inside a small range. The reason 
for making the range small is to reduce the likelihood of the neurons in the 
network saturating and producing small error gradients. 

However, the range should not be made too small, as it can cause the error 
gradients to be very small and the learning therefore to be initially very 
slow. 

14
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Heuristics for making the Back-
Propagation Algorithm Perform Better

4. All neurons in the multilayer Perceptron should desirably learn at the 
same ratesame rate. 
Typically, the last layers tend to have larger local gradients than the layers at 
the front end of the network. Hence, the learning-rate parameter  should be 
assigned a smaller value in the last layers than the front layers. 

* Neurons with many inputs should have a smaller learning-rate
parameter than neurons with few inputs.

15

p p

Heuristics for making the Back-
Propagation Algorithm Perform Better

5. For on-line operation, pattern-by-pattern updating rather than batch 
updating should be used for weight adjustmentsupdating should be used for weight adjustments.

For pattern-classification problems involving a large and redundant 
database, pattern-by-pattern updating tends to be orders of magnitude faster
than batch updating. 

16

6. The order in which the training examples are presented to the network
should be randomized (shuffled) from one epoch to the next. This form of 
randomization is critical for improving the speed of convergence. 
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Heuristics for making the Back-
Propagation Algorithm Perform Better

7. Learning-rate:
In previous lectures and projects we studied the important effect of learning-
rate in back-propagation learning algorithm. Here, some new methods to 
improve the learning-rate value is introduced.

0 Conventional learning rate:

In each iteration the learning rate value decreases
(stochastic approximation):
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(Where,  is search time constant)
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Flexible Neural Networks 

Typical Multi Layer Perceptron
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Typical Multi Layer Perceptron
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Typical Multi Layer Perceptron
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Back Propagation Equations:
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Flexible Neural Network
A Perceptron neural network which contains the flexible sigmoid 
functions in neurons is known as Flexible Neural Network.

Increasing the flexibility of neural network structure induces a more 
efficient learning ability.
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Flexible Neural Network

x

u1

u0 y0

y1

u2

y2

3w1w

y1x

2x

u3
y3

2w

a3

7

3
3

3 33 3 3

3 3 3 3 *
3

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )( ( ( ), ( )))

E n E n e n y n
a n

a n e n y n a n

a n e n f u n a n

 



        
   

 

Flexible Neural Network

x

u1

u0 y0

y1

u2

y2

3w1w

y1x

2x

u3
y3

2w

a3

a2

8

3 3 2
2

2 22 3 3 2 2

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

E n E n e n y n u n y n
a n

a n e n y n u n y n a n
           

     

2 3 3 3 2 2 2 *
2( ) ( ) ( ( ), ( )). ( ).( ( ( ), ( )))a n e n f u n a n w n f u n a n  
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Flexible Neural Network

x

u1

u0 y0

y1

u2

y2

3w1w

y1x

2x

u3
y3

2w

a3
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3 3 2 2 1
1

1 11 3 3 2 2 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

E n E n e n y n u n y n u n y n
a n

a n e n y n u n y n u n y n a n
             

       

1 3 3 3 2 2 2 1 1 1 *
1( ) ( ) ( ( ), ( )). ( ). ( ( ), ( )). ( ).( ( ( ), ( )))a n e n f u n a n w n f u n a n w n f u n a n   

A new method to tune the learning-rate

• Delta-bar-Delta
– This method is applicable to learning rates in MLP and F.MLP.

( 1) ( 1) ( ) 0

( ) ( 1)    ( 1) ( ) 0

0

k k k

k b k k k

Otherwise

   
   

   
   



10

4 110 10

0.5 0.9b

 


 
 
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Artificial Neural Networks

Lecture 9

Some Applications of Neural Networks (1)
(Function Approximation)

2

Function Approximation

Many computational models can be described as functions mapping
some numerical input vectors to numerical outputs. The outputs 
corresponding to some input vectors may be known from training 
data, but we may not know the mathematical function describing the 
actual process that generates the outputs from the input vectors.

Function approximation is the task of learning or constructing a 
function that generates approximately the same outputs from input 
vectors as the process being modeled, based on available training 
data.

y=f(x)x y
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3

Function Approximation

y=f (x)x y

A.N.N.
+_

4

Function Approximation

Training Data is created of a finite set of input-output samples.  

The above figure shows that the same finite set of samples can be 
used to obtain many different functions, all of which perform 
reasonably well on the given set of points. 
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5

Function Approximation

Since, infinitely many functions exist that match for a finite set of 
points, additional criteria are necessary to decide which of these 
functions are desirable.

f1,  f2 or  f3: ?

6

Function Approximation

• Continuity and smoothness of the function are almost always 
required.
• Following established scientific practice, an important criterion is 
that of simplicity of the model, i.e., the neural network should have as 
few parameters as possible.
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7

Function Approximation

• Function f2 passes through all the points in the graph and thus 
performs best; but f1,which misses the outlier, is a much simpler 
function and is preferable.

8

Function Approximation

In following figure, where the straight line (f1)performs reasonably 
well, although f2 and f3 perform best in that they have zero error. 
Among the latter, f2 is certainly desirable because it is smoother and 
can be represented by a network with fewer parameters. 

• Implicit in such comparisons is the assumption that the given 
samples themselves might contain some errors due to the method used 
in obtaining them, or due to environmental factors. 



5

9

Function Approximation
Example 1: The desired function to be approximated is y(x)=0.4sin(x)+0.5. 
A three-layered MLP is used as the learning prototype.

• The number of hidden neurons in these two hidden layers is set equal in 
the simulation. 
• The training and validation data sets, containing 200 samples each, are 
randomly sampled from the input space, and the outputs are subjected to 
WGN with a standard deviation of 0.2.

y(x)=0.4sin(x)+0.5

10

Function Approximation
Example 2: The desired function to be approximated is 

y(x)=x2
2+sin(3x2)+2x1

2sin(4x1)+x1sin(4x2). 

• Data points are randomly sampled adding WGN with a standard deviation 
of 0.1 to produce training and validation data sets, each containing 100 
samples.
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Function Approximation

2-25-25-1

12

Overfitting Problem
What is the minimum number of hidden layers in a multilayer 

Perceptron with an input-output mapping that provides an 
approximate realization of any continuous mapping ?

One curve relates to the use of few adjustable parameters (i.e., underfitting), 
and the other relates to the use of many parameters (i.e., overfitting). 

In both cases, we usually find that 
(1) the error performance on generalization exhibits a minimum point, and
(2) the minimum mean squared error for overfitting is smaller and better 

defined than that for underfitting.
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13

Overfitting Problem
A network that is not sufficiently complex can fail to detect fully the signal 

in a complicated data set, leading to underfitting.

But, a network that is too complex may fit the noise, not just the signal, 
leading to overfitting. 

- Overfitting is especially dangerous because it can easily lead to 
predictions that are far beyond the range of the training data with many 
of the common types of NNs. 

- Overfitting can also produce wild predictions in multilayer perceptrons 
even with noise-free data.

14

Overfitting Problem

Accordingly, we may achieve good generalization even if the neural network 
is designed to have too many parameters, provided that training of the 
network on the training set is stopped at a number of epochs 
corresponding to the minimum point of the error-performance curve on 
cross-validation.
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15

Overfitting Problem

The best way to avoid overfitting is to use lots of training data.

* If you have at least 30 times as many training data as there are weights in 
the network, you are unlikely to suffer from much overfitting. 

* For noise-free data, 5 times as many training data as weights may be 
sufficient. 

* You can't arbitrarily reduce the number of weights due to fear of 
underfitting.

* Underfitting produces excessive bias in the outputs, whereas overfitting 
produces excessive variance.

16

3rd Mini Project

By using of an arbitrary neural network (MLP) approximate the function 
which is presented in example 1.

1st Part of Final Project
By using of an arbitrary neural network (MLP) approximate the function 

which is presented in example 2. 
In this project You can use all hints which are introduced in previous lectures 

but, you should explain their effects (score: 2 points)  
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Artificial Neural Networks

Lecture 10

Some Applications of Neural Networks (2)
(System Identification)

2

System Identification

The main objective of identification process is to propose specific neural 
network architectures that can be used for effective identification of a 
linear/nonlinear system using only input-output data.

Here, the main result is the establishment of input-output models using 
feedforward neural networks.

u(t) y(t)
( ) ( ( ), ( ))

( ) ( ( ))

x t f x t u t

y t h x t


 


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System Identification

u(t) y(t)

N.N.
Identifier

+_

( , )

( )

x f x u

y h x


 



T

T

Sample time

u(k)

y(k)

The supervised training of a MLP may be viewed as a global nonlinear identification 
problem, the solution of which requires the minimization of a certain cost function. The cost 
function E is defined in terms of deviations (error) of the network outputs from
desired outputs, and expressed as a function of the weight vector w representing the
free parameters (i.e., synaptic weights and thresholds and ) of the network. 
The goal of the training is to adjust these free parameters so as to make the actual outputs of 
the network match the desired outputs as closely as possible

4

System Identification

Multilayer feedforward neural networks are universal approximators:

It was proved by Cybenko (1989) and Hornik et al. (1989) that any
continuous mapping over a compact domain can be approximated as 
accurately as necessary by a feedforward neural network with one hidden 
layer.

Two facts make the MLP a powerful tool for approximating the 
functions or identifying the systems:

The back propagation algorithm:

This algorithm which performs stochastic gradient descent, provides an 
effective method to train a feedforward neural network to approximate
a given continuous function over a compact domain.
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5

State Space model for Identification

Consider a discrete plant as: ( 1) ( ( ), ( ))

( ) ( ( ))

x k f x k u k

y k h x k

 


If the state of the system is assumed to be directly measurable, the
identification model can be chosen as:

( 1) [ ( ), ( )]

ˆ( ) [( ( )]

f

h

z k NN z k u k

y k NN x k

 



6

State Space model for Identification

In this case, the states of the plant to be identified are assumed to be 
directly accessible, and each of the networks NNf and NNh can be 
independently trained using static learning.
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7

State Space model for Identification
Since x(k) is not accessible and the error can be measured only at the
output, the networks cannot be trained separately. Since the model 
contains a feedback loop, the gradient of the performance criterion 
with respect to the weights of NNf varies with time, and thus dynamic 
back propagation needs to be used.

8

State Space model for Identification

In this structure, the states of the N.N. model provide an approximation or 
estimation to the states of the system.

A natural performance criterion for the model would be the sum of the
squares of the errors between the system and the model outputs:

2 21
ˆ( ) ( ) ( ) ( )

2 k k

E k y k y k e k   

h hw NN ( )

( )h h
h

dE k
w

dw k
  

f fw NN
1

( )( ) ( )
.

( ) ( ) ( )

n
j

f f f
jf j f

dz kdE k E k
w

dw k z k dw k
 




    



1

( ) ( ) ( )( 1)
.

( 1)

n
j j jl

lf l f f

dz k z k z kz k

dw z k w w

  
 

   

Dynamic Back Propagation:
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State Space model for Identification

• Training was done with a random 
input uniformly distributed in [—1,1].

• The identification model was tested 
with sinusoidal inputs

 

 

1 2

2 1 2

2

1 2

( 1) ( ) 1 0.2 ( )

( 1) 0.2 ( ) 0.5 ( ) ( )

( ) 0.3 ( ) 2 ( )

x k x k u k

x k x k x k u k

y k x k x k

  

    

 

Example 1:

 
 

 

1 1 1 2

1 2 1 2

1 2

ˆ ˆ ˆ( 1) ( ), ( ), ( )

ˆ ˆ ˆ( 1) ( ), ( ), ( )

ˆ ˆ ˆ( ) ( ), ( )

f

f

h

x k NN x k x k u k

x k NN x k x k u k

y k NN x k x k

 

 



10

Input-Output model for Identification

Clearly, choosing the state space models for identification requires the use of
dynamic back propagation, which is computationally a very intensive procedure. 

At the same time, to avoid instabilities while training, one needs to use small 
learning rate to adjust the parameters, and this in turn results in long convergence 
times.

Consider the difference Equation corresponding to a typical linear plant:

1

1 1

( ) ( ) ( )
n n

i j
i j

y k a y k i b u k j


 

    

Input-Output Model of plant:
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Input-Output model for Identification
1

1 1

( ) ( ) ( )
n n

i j
i j

y k a y k i b u k j


 

    

 ( 1) ( 1), ( 1)l ly k h Y k l U k l     

Linear Model:

12

Input-Output model for Identification

( 1) ( ( ), ( ))

( ) ( ( ))nl

x k f x k u k
S

y k h x k

 
 



0 0 0 0

0

, ,( 1) ( ) ( )

( ) ( )

x u x u

A b
linearized

x

c

f f
x k x k u k

x u

S
h

y k x k
x

  

 

      


 
 


 

Theorem Let Snl be the nonlinear system, and Slinearized its linearization 
around the equilibrium point. If Slinearized is observable, then Snl is locally 
strongly observable. Furthermore, locally, Snl can be realized by an input-
output model.

1

o

n

c

cA

cA





 
 
 
 
 
 

Observability Matrix



7

13

Input-Output model for Identification

If strong observability conditions are known (or assumed) to be satisfied in the system's 
region of operation with n state variables, then the identification procedure using a 
feedforward neural network is quite straightforward.

At each instant of time, the inputs to the network consisting of the system's past n input
values and past n output values (all together 2n), are fed into the neural network. 

The network's output is compared with the next observation of the system's output to
yield the error 

The weights of the network are then adjusted using static back propagation
to minimize the sum of the squared error.

Neural Network Implementation:

 ( 1) ( 1) ( 1) ( 1) ( 1), ( 1)l le k y k y k y k h Y k n U k n           

14

State Space model for Identification

 

1 2 1 2

2 1 2

2

1 2

( 1) 0.5 ( ) 0.2 ( ) ( )

( 1) 0.3 ( ) 0.8 ( ) ( )

( ) ( ) ( )

x k x k x k x k

x k x k x k u k

y k x k x k

  
    

 

Example 2:

The linearized system around 
the equilibrium point:

1 2

2 1 2

1

( 1) 0.5 ( )

( 1) 0.3 ( ) 0.8 ( ) ( )

( ) ( )

x k x k

x k x k x k u k

y k x k

 
   
 

 
    


And its observability:

1 0
:  ful rank

0 0.5o
 

  
 
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State Space model for Identification

* A neural network was trained to implement the model (4-12-6-1). 

* The system was driven with random input  ( ) 1,1u k  

Plant

N.N.
z-1

z-1

z-1

( 1)y k 

ˆ ( 1)y k  ( 1)e k 

( )y k

( 1)y k 

( )u k

( 1)u k 

( )u k

16

State Space model for Identification

* A neural network was trained to implement the model (4-12-6-1). 

* The system was driven with random input  ( ) 1,1u k  

Plant

N.N.
z-1

z-1

z-1

( 1)y k 

ˆ ( 1)y k  ( 1)e k 

( )y k

( 1)y k 

( )u k

( 1)u k 

( )u k
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2nd Part of Final Project

By using of an arbitrary neural network (MLP) identify the discrete 
nonlinear plant which is presented in example 2 (Score: 1 points).

• By using a test signal, show that the N.N. identifier perform a appropriate 
input-output model of plant.

• By using of the PRBS signal, repeat the identifying procedure and 
compare the results.

The material of this lecture is based on:

Omid Omidvar and David L. Elliott, Neural Systems for Control, 
Academic Press; 1st edition (1997).



1

Artificial Neural Networks

Lecture 11

Some Applications of Neural Networks (3)
(Control)

2

NN-based Control

One of the most important applications of 
N.N. is its employment in control theory. 

In most cases, the ordinary control theory 
cannot be easily applied, due to the presence 
of uncertainty, nonlinearity or time varying 
parameters in real plants.
N.N. can overcome these problems with 
interesting properties such as parallel 
processing, flexibility in structure and real 
time learning.

Generally, the NN-based control is called 
neuromorphic control
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NN-based Control

Classical Control:

Controller Plant( )r t ( )y t
( )u t

N.N. Controller:  1st Structure

NN Controller Plant ( )r k
( )y k( )u k( )r k

( )e k

4

NN-based Control and Specialized 
learning

N.N. Controller:  1st Structure

NN Controller Plant ( )r k
( )y k( )u k( )r k

( )e k

TDL



( )r k

( )e k

1w
2w

0y 1u
1y 2u

2y u

Plant

( )r k



( )y k ( )e k

T
D

L
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NN-based Control and Specialized 
learning

( )r k

( )e k

1w
2w

0y 1u
1y 2u

2y u

Plant

( )r k



( )y k ( )e k

T
D

L

Forward Equations:

1 1 0u w y
1 1

1( )y f u
2 2 1u w y

2 2( ) ( )u k y f u 
( 1) ( ( ), ( ))

( ) ( ( ))

x k f x k u k

y k h x k

 
 

6

NN-based Control and Specialized 
learning

( )r k

( )e k

1w
2w

0y 1u
1y 2u

2y u

Plant

( )r k



( )y k ( )e k

T
D

L

Backward Equations: ( ) ( ) ( )e k r k y k 



2 2
2

2 2 2 2

Plant Jacobi

( ) ( ) ( ) ( )
( )

( ) ( ) (

( )

( ) () )

E k u k y k u k
w k e

w k y

y k

u k w kk k u
  


  

   
   

21
( )

2 k

E e k 



2 2 1 1
1

1 2 2 1 1 1

Plant Jacobi

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) (

( )

( ) )

E k u k y k u ky k y k u k
w k e

w k y k u k y k uk ku w k
      

 



 
     
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Plant Jacobian Computation

Plant Jacobian Computation:

( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( 1)p

y k y k y k y k
J

u k u k u k u k

   
  
   

1st method:

Drawback: ( ) ( 1)    pu k u k J   

2nd method:  
 

( ) ( 1)( )

( ) ( ) ( 1)p

sign y k y ky k
J

u k sign u k u k

 
 
  

Drawback: In additional to the above drawback, this method can 
perform an oscillating behavior in learning process.

8

Plant Jacobian Computation

Plant Jacobian Computation:

3rd method: Using the NN identifier

( )( )

( ) ( )
I

p

y ky k
J

u k u k


 
 

NN Controller Plant ( )r k
( )y k( )u k( )r k

( )e k

TDL



NN Identifier

( )Iy k







9

Model Reference N.N. Adaptive Control

Note: This method is useful when you can realize the desire 
performance as a Reference model.

NN Controller Plant

( )y k( )u k
( )r k

( )e k


NN Identifier

( )Iy k

Reference Model







( )Ie k

TDL

10

Self Tuning PID Control

 ( ) ( ) ( ) ( 1) ( )p D Iu k k e k k e k e k k z k    

PID controller has been widely used in industry. The discrete time PID 
controller usually has a structure described by the following equation:

( ) ( 1) ( )z k z k e k  

The conventional PID controller cannot be useful in deal with 
uncertain, nonlinear and/or time varying plants. So, the self tuning PID 
controller can be proposed to tackle this crucial problem due to the real 
time parameters adjustment.



11

Self Tuning PID Control

 ( ) ( ) ( ) ( 1) ( )p D Iu k k e k k e k e k k z k    

( ) ( 1) ( )z k z k e k  

PID Controller Plant
( )y k

( )u k

N.N.

1z

( )e k

( 1)e k 

pk

Ik

Dk

( )r k

12

Learning in Self Tuning PID Control

( ) ( )
. . ( ). . ( )

( ) ( )p p
p p

E y k u k
k e e k J e k

k u k k k
    

    
  

 ( ) ( )
. . ( ). . ( ) ( 1)

( ) ( )D p
D D

E y k u k
k e e k J e k e k

k u k k k
    

      
  

PID Controller Plant
( )y k

( )u k

N.N.

1z

( )e k

( 1)e k 

pk

Ik

Dk

( )r k
 

( ) ( )
. . ( ). . ( )

( ) ( )I p
I I

E y k u k
k e e k J z k

k u k k k
    

    
  
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Self Tuning PID Control

Example: Consider a servo model of the robot manipulator with following 
dynamic equation:

   2( ) 0.2 ( 2) ( 1) 0.25 ( 2) ( 1) 0.225sin ( 1) ( 2)y k y k y k y k u k y k y k             

Output responses using conventional PID (Reference input is a sine wave ) 
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Self Tuning PID Control

   2( ) 0.2 ( 2) ( 1) 0.25 ( 2) ( 1) 0.225sin ( 1) ( 2)y k y k y k y k u k y k y k             

Output responses using self tuning PID (Reference input is a sine wave ) 
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A Reliable Structure for Control

1st Step: Free parameters of the NN controller can be adjusted using the
identification architecture:

Classical 
Controller

Plant( )r t ( )y t
( )u t

NN Controller








TDL

16

A Reliable Structure for Control

2nd Step: In this step, both the classical controller and the NN controller 
produce the control effort signal.
Free parameters of the NN controller, which are adjusted in step 1, 
should be adjusted again by employing the Specialized learning.

Classical 
Controller

Plant ( )r k
( )y k( )u k

NN Controller





( )e k

TDL



3rd Step: You can smoothly remove the classical controller, when the 
closed loop control system performance is sufficiently suitable.
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3rd Part of Final Project

In this project, you should find a practical plant in papers and by using of 
NN controllers provide a suitable closed loop control performance. 
(Score: 2 points) 

• In this project you can use of any NN controllers structure which are 
presented in this lecture.

• In this project you can use of any NN controllers which are introduced in 
papers and text books (score: +1 point).

18
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2

Recurrent Neural Networks

The conventional feedforward neural networks can be used to 
approximate any spatiality finite function. That is, for functions 
which have a fixed input space there is always a way of encoding 
these functions as neural networks. 
For example in function approximation, we can use the automatic 
learning techniques such as backpropagation to find the weights 
of the network if sufficient samples from the function is available.

Recurrent neural networks are fundamentally different from 
feedforward architectures in the sense that they not only operate on 
an input space but also on an internal state space.

These are proposed to learn sequential or time varying patterns.
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Recurrent Neural Networks

Recurrent Neural Networks, 
unlike the feed-forward neural 
networks, contain the feedback 
connections among the neurons.

Three subsets of neurons are presented in the recurrent networks:

1. Input neurons
2. Output neurons
3. Hidden neurons, which are neither input nor output neurons.

Note that a neuron can be simultaneously an input and output neuron; such 
neurons are said to be autoassociative.

Recurrent Neural Networks

4
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Recurrent Neural Networks
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Forward Equations:
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    

2 1 1
11 1 12 2( ) ( ) ( ) ( ) ( )u k w k y k w k y k  2( ) ( ( ))y k f u k
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Recurrent Neural Networks
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Back Propagation Equations:
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Recurrent Neural Networks
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Linear Prediction

Linear Prediction:

1

ˆ ( ) ( )
p

i
i

y k a y k i


 

1

ˆ( ) ( ) ( ) ( ) ( )
p

i
i

e k y k y k y k a y k i


    

The estimation of the parameters ai is based on minimizing a function of error.
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Prediction using FF Neural Network

F.F. Neural Network 
structure for Prediction:

10

Prediction using Recurrent N. N.

Recurrent Neural 
Network architecture for 
Prediction:
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Example for one step ahead Prediction

ˆ ( )

( ), ( 1), , ( 1) ,  ( )

y k n p

y k n y k n y k n p y k n p


 

       

ˆ( ) ( ) ( )e k n p y k n p y k n p       

It is used for back-propagatoin.

ˆ ( 1)

( ),  ( 1) ( 1) ( ) ,   ( 1) 

y k n p

y k n y k n y k n p y k n p y k n p


  

          

ˆ( 1) ( 1) ( 1)e k n p y k n p y k n p          

Window size: P

12

Example for one step ahead Prediction

ˆ( )

( ),  ,  ( 1), ( ), , ( 2), ( 1)   ?   

y k

xy k n y k p y k p y k y k


      

ˆ( )x y k
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4th Mini Project

In this project, a typical time series like the Lorenz data should be employed 
to one step ahead prediction by using of any neural network.

Time step = 0.01
Window size = 5

( )

( )

45.92,  4,  16.5

x y x

y xz r x y

z xy bz

r b





 
    
  

  




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Radial Basis Function
Radial functions are a special class of function. Their characteristic feature 
is that their response decreases (or increases) monotonically with distance 
from a central point. 

( )i iy x c 

A typical radial function is the Gaussian which in the case of a scalar input is

2( )ix c

r
iy e






-3 -2 -1 0 1 2 3
0

0.5

1

1.5
Bipolar Sigmoid Function
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Gaussian RBF
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A Gaussian RBF monotonically 
decreases with distance from 
the center.
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4

Multiquadric RBF
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A Multiquadric RBF monotonically 
increases with distance from the center.
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General RBFs
The most general formula for any radial basis function RBF is:

1
*1( ) ( ) ( )T

mh      x x c R x c

Obviously, (x-c)TR-1(x-c) is the distance between the input x
and the center c in the metric defined by R.

There are several common types of functions used:

The Gaussian: ( ) zz e 

The Multiquadric: 0.5( ) (1 )z z  

The Cauchy:

The invers Multiquadric: 0.5( ) (1 )z z  
1( ) (1 )z z  

Often, R=r2I.

6

RBF Networks

After the FF networks, the radial basis function (RBF) network 
comprises one of the most used network models.

The construction of a radial-basis function (RBF) network in its most 
basic form involves three entirely different layers. 
The input layer is made up of source nodes (sensory units). 
The second layer is a hidden layer of high enough dimension, which 
serve a different purpose from that in a MLP. 
The output layer supplies the response of the network to the activation 
patterns applied to the input layer. 
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RBF Networks

The transformation from the input space to the hidden-unit space is 
nonlinear, whereas the transformation from the hidden-unit space to the 
output space is linear.

8

RBF Networks
In a RBF network there are three types of parameters that need to be 

chosen to adapt the network for a particular task: 
1. the center vectors ci

2. the output weights wij, j

3. the RBF width parameters ri.



9

RBF Networks

Characteristics of a typical RBF neural network:

I  Number of neurons in the hidden layer  i∈{1,2,..., I}
J  Number of neurons in the output layer  j∈{1,2,..., J}
wij Weight of the ith neuron and jth output
φ Radial basis function
αi Spread parameter of the ith neuron
x Input data vector
ci Center vector of the ith neuron
βj Bias value of the output jth neuron
ŷj Network output of the jth neuron

10

Training the RBF Networks
Feedforward equations of a typical RBF neural network:

1

2

m

x

x

x

 
 
 
 
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1
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i i ir
iy e e 
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     

    
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Training the RBF Networks
Back-propagation:

ˆ( ) ( ) ( )e k y k y k  21
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2 k

E e k 
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 
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  
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Training the RBF Networks
Back-propagation:
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Comparison of RBF Networks 
and MLP [1]

Radial-basis function (RBF) networks and multilayer perceptrons are 
examples of nonlinear layered feedforward networks. They are 
both universal approximators.

However, these two networks differ from each other in several 
important respects, as:

1. An RBF network (in its most basic form) has a single hidden layer, 
whereas an MLP may have one or more hidden layers.

2. Typically, the computation nodes of an MLP, be they located in a 
hidden or output layer, share a common neuron model. On the other 
hand, the computation nodes in the hidden layer of an RBF network 
are quite different and serve a different purpose from those in the 
output layer of the network.

14

Comparison of RBF Networks 
and MLP [1]

3. The hidden layer of an RBF network is nonlinear, whereas the output 
layer is linear. On the other hand, the hidden and output layers of an 
MLP used as a classifier are usually all nonlinear; however, when 
the MLP is used to solve nonlinear regression problems, a linear 
layer for the output is usually the preferred choice.

4. The argument of the activation function of each hidden unit in an 
RBF network computes the Euclidean norm (distance) between the 
input vector and the center of that unit. On the other hand, the 
activation function of each hidden unit in an MLP computes the 
inner product of the input vector and the synaptic weight vector of 
that unit.
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Comparison of RBF Networks 
and MLP [1]

5. MLPs construct global approximations to nonlinear input-output
mapping. Consequently, they are capable of generalization in regions of 
the input space where little or no training data are available. 

On the other hand, RBF networks using exponentially decaying localized 
nonlinearities (e.g., Gaussian functions) construct local approximations

to nonlinear input-output mapping, with the result that these networks are
capable of fast learning and reduced sensitivity to the order of presentation 

of training data. 

16

5th Mini Project

In this project, a chaotic time series is considered therein is the logistic map 
whose dynamics is governed by the following difference equation

Window size = 5  ( ) 4 ( 1) 1 ( 1)x n x n x n   

* Compare the results with MLP neural networks.
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2

Hopfield Neural Network

A Hopfield net is a form of recurrent 
artificial neural network invented by 
John Hopfield. 

Hopfield nets serve as content-addressable 
memory systems with binary threshold
units. 

It can be used to solve the optimization 
problems.
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Hopfield Neural Network

A Hopfield network:

( ) ( 1) ( )j ij i j
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In Hopfield network the 
synaptic weights are 
symmetric:
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Also, in HN there are no 
self feedback:

4

Hopfield Neural Network

A Binary Hopfield network:

( ) ( 1) ( )j ij i j
i j

u n w y n x n


  

1 ( )
( )

0 ( )
j j

j
j j

u n
y n

u n





  

1 ( )

or      ( ) ( 1) ( )

0 ( )

j j

j j j j

j j

u n

y n y n u n

u n





 
  
 
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Hopfield Neural Network

The energy E for the whole network can be determined from energy 
function as the following equation:

1

2 ij i j i i i i
i j i i

E w y y x y y     

i ij j i i i
j

E w y x y
 

      
 
So:

Δyi is positive when the terms in brackets is positive; and Δyi becomes 
negative in the other case. 
Therefore the energy increment for the whole network ΔE will always 
decrease however the input changes.

6

Hopfield Neural Network

The ability to minimize the energy function in a very short 
convergence time makes the HN described above be very useful in 
solving the problems with solutions obtained through minimizing a 
cost function. 
Therefore, this cost function can be rewritten into the form of the 
energy function as E if the synaptic weights wij and the external input 
xi can be determined in advance.

So, the following two statements can be introduced:
1. The energy function E is a Lyapunov function.
2. The HNN is a stable in accordance with Lyapunov’s Theorem. 
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Hopfield Neural Network

Hopfield networks can be implemented to operate in two modes:

- Synchronous mode of training Hopfield networks means that all neurons 
fire at the same time.
- Asynchronous mode of training Hopfield networks means that the neurons 
fire at random.

Example: Consider a Hopfield network with three neurons

0 0.4 0.2

0.4 0 0.5

0.2 0.5 0

W

 
   
  

Let the state of the network be:  y(0)=[ 1, 1, 0 ]T.

8

Hopfield Neural Network

Example:

0 0.4 0.2

0.4 0 0.5

0.2 0.5 0

W

 
   
  

y(1)=[ 1,0,0 ]Ty(1)=[ 0,1,0 ]T y(1)=[1,1,1]y1(1)=[ 0,1,0 ]T

y2(1)=[ 0,0,0 ]T

y=y3(1)=[ 0,0,0]T

y(0)=[1,1,0]T

Asynchronous modeSynchronous 
mode

1

(0) 1

0

y

 
   
  
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State table of Hopfield N.N.
A Hopfield net with n neurons has 2n possible states, assuming that each neuron 
output produces two values 0 and 1. 

The state table for the above example Hopfield network with 3 neurons is given 
below.

Init.        state if         state if       state if
state     N1 fires       N2 fires     N3 fires

000        100              000             000
001        101              011             000
010        010 000 011
011        011 011 011
100        100 100 101
101        101 111             101

110 010 100             111
111        011              111             111

10

Hopfield N.N. as BAM
Hopfield networks are used as content-addressable memory or Bidirectional 
Associative Memory (BAM). The content-addressable memory is such a device 
that returns a pattern when given a noisy or incomplete version of it. 

In this sense a content-addressable memory is error-correcting as it can override
provided inconsistent information.

The discrete Hopfield network as a memory device operates in two phases: 
storage phase and retrieval phase. 
During the storage phase the network learns the weights after presenting the 
training examples. The training examples for this case of automated
learning are binary vectors, called also fundamental memories. The weights 
matrix is learned using the Widrow-Hoff rule. According to this rule when an 
input pattern is passed to the network and the estimated network output does not 
match the given target, the corresponding weights are modified by a small 
amount. 
The difference from the single-layer perceptron is that no error is computed, 
rather the target is taken directly for weight updating.
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Widrow-Hoff Learning
Learning: The Widrow-Hoff learning rule suggests to compute the 
summation block of the i-th neuron: 

( ) ( 1) ( )j ij i j
i j

u n w y n x n


  

There are two cases to consider:
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  
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u n
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y n


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Where, n denotes the 
number of neurons.

12

Outer product Learning
Learning: Suppose that we wish to store a set of N-dimensional vectors 
(binary words), denoted by {   = 1, 2, . . . , M}. We call these M vectors 
fundamental memories, representing the patterns to be memorized by the 
network.
The outer product learning rule, that is, the generalization of Hebb’s
learning rule:

1

1 M
T M

N  


 
  

 
W ξ ξ I

From these defining equations of the synaptic weights matrix, we
note the following:

• The output of each neuron in the network is fed back to all other neurons.
• There is no self-feedback in the network (i.e., wii= 0).
• The weight matrix of the network is symmetric. (i.e., WT=W)
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Learning Algorithm

Initialization: Let the testing vector become initial state x(0) 

Repeat
-update asynchronously the components of the state x(t)

-continue this updating until the state remains unchanged

until convergence

Generate output: return the stable state (fixed point) as a result. The 
network finally produces a time invariant state vector y which satisfies 
the stability condition:

( ) ( 1) ( ) 0  ( ) 1j ij i j i
i j

u n w y n x n y n


     

sgn( ) y Wy b

( ) ( 1) ( ) 0  ( ) 0j ij i j i
i j

u n w y n x n y n


     
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Learning Algorithm

During the retrieval phase a testing vector called probe is presented to the 
network, which initiates computing the neuron outputs and developing the 
state. 
After sending the training input to the recurrent network its output 
changes for a number of steps until reaching a stable state. 
The selection of the next neuron to fire is asynchronous, while the
modifications of the state are deterministic. 
After the state evolves to a stable configuration, that is the state is not 
more updated, the network produces a solution.

This state solution can be envision as a fixed point of the dynamical 
network system. The solution is obtained after adaptive training.
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Summary of Hopfield Model
The operational procedure for the Hopfield network may now be summarized as follows:

1. Storage (Learning). Let , …, M denote a known set of N-dimensional memories.
Construct the network by using the Widrow-Hoff or outer product rule (Le., Hebb's
postulate of learning) to compute the synaptic weights of the network. 
The elements of the vector M equal +1/-1. Once they are computed, the synaptic weights are 
kept fixed.

2. Initialization. Let probe denote an unknown N-dimensional input vector (probe) presented
to the network. The algorithm is initialized by setting 

yj(0) = j,probe j = 1, . . . , N
where yj(0) is the state of neuron j at time n = 0.

3. Iteration until Convergence. Update the elements of state vector y(n) asynchronously
(i.e., randomly and one at a time) according to the rule

y(n+1)=sgn[w.y(n)]
Repeat the iteration until the state vector s remains unchanged.

4. Outputting. Let yfixed denote the fixed point (stable state) computed at the end of step 3.
The resulting output vector y of the network is

Y =yfixed

16

Summary of Hopfield Model

Example: Consider a Hopfield N.N. with 3 neurons, which we want store 
two vectors (1,-1,1) and (-1,1,-1):

   
1 1 1 0 0 0 2 2

1 1
1 1 1 1 1 1 1 1 2 0 1 0 2 0 2

3 3
1 1 0 0 1 2 2 0

         
                         
                 

W

The threshold applied to each neuron is assumed 
to be zero and the corresponding HNN has no 
external input.
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Summary of Hopfield Model

Therefore, the network has two fundamental memories.

0 2 2
1

2 0 2
3

2 2 0

 
    
  

W
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Summary of Hopfield Model

   
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   

(0) 1 1 1   

(0) 1 1 1    

(0) 1 1 1    

(

1 1 1

1 1 1

1

0) 1 1 1   
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1 1

1 1 1

1 1

1 1 1
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T
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T T
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T

T

T
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T

T

y

y

y
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y

 
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  

   

   

 

 

 
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Genetic Algorithm

Lecture 15

Introduction to G.A.

2

Optimization 

In mathematics and engineering science, optimization, refers to choosing 
the best element from some set of available alternatives.
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Methods of Optimization 

Main approaches to solve an optimization problem are:

• Newton’s Method
• Quasi-Newton method 
• Gradient descent 
• Gauss–Newton algorithm 
• Levenberg–Marquardt algorithm
• Steepest descent
• Simulated Annealing (Monte Carlo)
• Genetic Algorithms

Genetic Algorithm (GA) is the most popular type of  
Evolutionary Algorithm (EA).

4

Evolutionary Algorithm 

Darwin’s Theory of Evolutionary:
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History of Genetic Algorithm

Genetic Algorithms (GAs) are adaptive random search algorithm premised 
on the evolutionary ideas of natural selection and genetic. The basic concept 
of GAs is designed to simulate processes in natural system necessary for 
evolution, specifically those that follow the principles first laid down by 
Charles Darwin of survival of the fittest. 
As such they represent an intelligent exploitation of a random search within 
a defined search space to solve a problem. 

Genetic algorithms originated from the studies of 
cellular automata, conducted by John Holland
and his colleagues in 60s at the University of 
Michigan. Research in GAs remained largely 
theoretical until the mid-1980s, when The First 
International Conference on Genetic Algorithms 
was held at The University of Illinois. 
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Genetic Algorithm
GAs were introduced as a computational analogy of adaptive systems. They are 

modeled loosely on the principles of the evolution via natural selection, 
employing a population of individuals that undergo selection in the presence of 
variation-inducing operators such as mutation and recombination (crossover). 
A fitness function is used to evaluate individuals, and reproductive success varies 
with fitness. 

The Algorithms can be summarized as: 

1. Randomly generate an initial population M(0) 
2. Compute and save the fitness u(m) for each individual m in the current 

population M(t). 
3. Define selection probabilities p(m) for each individual m in M(t) so that 

p(m) is proportional to u(m) 
4. Generate M(t+1) by probabilistically selecting individuals from M(t) to 

produce offspring via genetic operators (Crossover and Mutation)
5. Repeat step 2 until satisfying solution is obtained. 
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GA and Biological background

1. Randomly generate an initial 
population

• Genetic information is stored in the  
chromosomes.
• Each chromosome is build of DNA
• Chromosomes in humans form pairs
• The chromosome is divided in parts: genes
• Genes code for properties

8

GA and Biological background
2. Compute and save the fitness u(m) for each individual m in the current 

population M(t). 

3. Define selection probabilities p(m) for each individual m in M(t) so that 
p(m) is proportional to u(m)

4. Generate M(t+1) by probabilistically selecting individuals from M(t) to 
produce offspring via genetic operators (Crossover and Mutation)

offspring
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Genetic Algorithm

GAs are useful and efficient when

• The search space is large, complex or poorly understood. 
• Domain knowledge is scarce or expert knowledge is difficult to

encode to narrow the search space.
• No mathematical analysis is available. 
• Traditional search methods fail. 

10

Genetic Algorithm

0  START : Create random population of n chromosomes

1 FITNESS : Evaluate fitness f(x) of each chromosome in the population

2  NEW POPULATION (using Genetic operations)
0 SELECTION : Based on f(x)
1 RECOMBINATION : Cross-over chromosomes
2 MUTATION : Mutate chromosomes
3 ACCEPTATION : Reject or accept new one

3 REPLACE : Replace old with new population: the new generation

4 TEST : Test problem criterium 

5  LOOP : Continue step 1 – 4 until criterium is satisfied

Basic algorithm of Genetic algorithm
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Encoding Issue
Each choromosme contains a possible solution of optimization problem. 

To define a possible solution in choromosms the encoding procedure 
should be employed. The encoding methods can be classified as 
follows:

• The binary encoding

• Real-number encoding

• Integer encoding

0 0 0 1 1 0 1 1 1 0 1 1

12.25 8.64 -7.26 4.40

1 3 2 8
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Crossover
Recombination (cross-over) can when using bitstrings schematically be 

represented as:

1

0

0

1

1

0

1

0

1

0

1

1

1

0

1

0

0

1

1

1

0

0

1

0

1

1

0

1

Crossover point

offspring
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Mutation
• Mutation is anotehr operator which prevents the algorithm to be

trapped in a local minimum.

• In the bitstring approach mutation is simply the flipping of one of 
the bits.

1

0

0

1

1

0

1

1

1

0

1

1

0

1

14

Evaluation and Selection
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Encoding Procedure

In G.A. preparing, first step is the encoding procedure. In this step we 
encode the decision variables into binary string.

The length of string depends on the required precision. Consider
variable xj as

j j jx b a   

And the Required precision is n place after the decimal point.

12 ( ) 10 2 1j jm n mb a     

The number of bits (mj) can be calculated using the inequality:

16

Example for Encoding Procedure
Example:  

13 12.1x  

1 1 2 2max ( , ) 21.5 sin(4 ) sin(20 )f x x x x x x   

24.1 5.8x 
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Example for Encoding Procedure
Example:  

13 12.1x  

1 1 2 2max ( , ) 21.5 sin(4 ) sin(20 )f x x x x x x   

24.1 5.8x 

4(12.1 ( 3))*10 151000  
18 1 182 131072 151000 2 1 262143     

4(5.8 4.1)*10 17000 
15 1 152 16384 17000 2 1 32767     

1 18m 

2 15m 

18 bit 15 bit

000001010100101001 101111011111110jv  A chromosome:

18

Mapping from binary to decimal
We can use the following equation to map a binary string to a real value:

18 bit 15 bit

000001010100101001 101111011111110jv  For example:

( )
2 1j

j j
j j m

b a
x a decimal substring


  



Binary Decimal (substring) Real value

000001010100101001 5417 -2.6880

101111011111110 24318 5.3617
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Initial Population
In GA process to solve an optimization problem in first step an Initial 
Population should randomly be generated.

To generate the initial population firstly define a Population Size.

20

Selection

Evaluation:
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Selection

Selection: (based on Roulette Wheel)

1. Calculate the fitness value for each chromosome in the population
eval(vj)=f(vj)

2. Calculate the total fitness for the population
F=f(vj)

3. Calculate the selection probability for each chromosome of the 
population

Pj=f(vj)/F
4. Calculate the cumulative probability for each chromosome

qk=k
j=1pj

5. Generate a random number r in [0,1]
6. If r<q1 select the first chromosome 

and if qk-1< r <qk then select the chromosome vk.

22

Selection

In the last example:

The total fitness is

And the probability of a selection for each chromosome is:
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Selection

In the last example:
The cumulative probability qk for each chromosome is:

Now we are ready to spin the roulette wheel 10 (population size) times, and 
each time we select a chromosome. So, r sequence can be generated 
randomly:

24

Selection

So, the new population is:
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Crossover
One of the important GA operators which can help us to search the 
corresponding space is Crossover:
In crossover procedure there are two steps:

1. Define the crossover rate (pc) to select the chromosomes for crossover.
2. Choose the crossover method (e.g. one-cut-point) and generate the 

new chromosomes.

In the last example: 0.25cp 

0.6257 0.2668 0.2886 0.2951

00. .5674 0.3928

0.7707 0.5486

1632 0.0859c cp p 

26

Crossover

Crossover methods: one-cut-point

Cutting point: a random number in [1-33] (e.g.: 17)
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Mutation

To prevent the GA of trapped in local minimum, Mutation operator is 
employed. In mutation procedure the following 2 steps are important.

1. Define the mutation rate (pm) to select genes.
2. Generate “number of genes*population size” random 

numbers (rm) and by comparing those with mutation rate 
choose the corresponding genes which satisfy the following 
equation to mutate (01 and 10).

m mr p

28

Mutation

In the last example: 0.01mp 

Random_num. Bit_ position Chrom._No. Bit_No.

0.009857 105 4 6

0.003113 164 5 32

0.000946 199 7 1

0.001282 329 10 32

1
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The solution

In the last example: After 1000 generation, the best chromosome 
is as follow and it is obtained in 419th generation.

30

General Structure of G.A.
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Solution Space, feasible and 
infeasible space

32

G.A. for minimizing the Ackley’s 
function

2 2
2

1 2 1 2 3 1
1 1

1 1
( , ) .exp exp cos( . ) .

2 2j j
j j

f x x c c x c x c e
 

   
           

 

1 25 , 5x x  

1

2

3

20

2.71282

0.2

2

c

e

c

c 






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Find a solution for Ackley’s 
Function Optimization Problem

population size: 10

max. generation: 1000

: 0.1

: 0.3

Pm

Pc








The G.A. parameters are set as:

Initial conditions
(Real number encoding):

1 25 , 5x x  
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Arithmetic Crossover

1 1 2

2 2 1

(1 )

(1 )

v v v

v v v




   
    

1

2

v

v





 where 0 1
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Non-uniform Mutation

 1, ,k nv x x x    1, ,k nv x x x  
Mutation

 or    ( , ),  ( , )U
k k k k

L
k k k kx x xx t x x t x x        

( , ) . .(1 )bt
t y y r

T
  

 

:   generation number

:   maximal generation number

:    random number 0 1

:   degree of nonuniformity

t

T

r

b


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G.A. solution
Evaluation
Here you can see the corresponding fitness function for parent 
chromosomes:

Now, we generate a sequence of random numbers:



G.A. solution
So, the chromosomes v2, v6, v8, v9 are selected for crossover

Offspring

G.A. solution
Mutation:

offspring

The fitness value for each offspring:
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7th Mini Project

In this project, by using of G.A. you should find the minimum point of 
Ackley’s function.
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