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Aims of the Course

1. Discuss the fundamental techniques in Neural
Networks.

2. Discuss the fundamental structures and its learning
algorithms.

3. Introduce the new models of NNs and its
applications.

Neural Network is an intelligent numerical
computation method.

Learning Outcomes

. Understand the relation between real brains and simple
artificial neural network models.

. Describe and explain the most common architectures and
learning algorithms for Multi-Layer Perceptrons, Radial-
Basis Function Networks and Kohonen Self-Organising
Maps.

. Explain the learning and generalization aspects of neural
network systems.

. Demonstrate an understanding of the implementation
issues for common neural network systems.

. Demonstrate an understanding of the practical
considerations in applying neural networks to real
classification, recognition, identification, approximation
problems and control.
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Course Evaluation

1. Course Projects 40%
2. Final Exam 50%
3. Conference Paper 10%

Reference Books

» Haykin S., Neural Networks: A Comprehensive
Foundation., Prentice Hall, 1999.

 Hagan M.T., Dcmuth H.B. and Beale M.,

Neural Network Design, PWS Publishing Co.,
1996.
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Preliminaries

Matrices Algebra to Neural Network design
and implementation.

MATLAB software for simulation. (NN
toolbox is arbitrary).




Artificial Neural Networks

Lecture 2

Introduction

What are Neural Networks?

Why are Artificial Neural Networks Worth
Noting and Studying?

What are Artificial Neural Networks used for?
Learning in Neural Networks

A Brief History of the Field

Artificial Neural Networks compared with
Classical Symbolic A.l.

7. Some Current Artificial Neural Network
Applications
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What are Neural Networks?

1. Neural Networks (NNs) are networks of neurons
such as found in real (i.e. biological) brains.

What are Neural Networks?

2. Artificial Neurons are crude approximations of the
neurons found in real brains.
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What are Neural Networks?

3. Artificial Neural Networks (ANNSs) are networks
of Artificial Neurons, and hence constitute crude
approximations to parts of real brains.

Hidden

Input
Qutput

What are Neural Networks?

4. From a practical point of view, an ANN is just a
parallel computational system consisting of many
simple processing elements connected together in
a specific way in order to perform a particular
task.
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Why are Artificial Neural Networks

6.

Worth Noting and Studying?

They are extremely powerful computational devices.
Parallel Processing makes them very efficient.

They can learn and generalize from training data — so
there is no need for enormous feats of programming.

They are particularly fault tolerant — this is equivalent to
the “graceful degradation” found in biological systems.

They are very noise tolerant — so they can cope or deal
with situations where normal symbolic (classic) systems
would have difficulty.

In principle, they can do anything a symbolic or classic

; System can do, and more.

What are Artificial Neural Networks used for?

Brain modeling : The scientific goal of building
models of how real brains work. This can
potentially help us understand the nature of
human intelligence, formulate better teaching
strategies, or better remedial actions for brain
damaged patients.

Artificial System Building : The engineering
goal of building efficient systems for real world
applications. This may make machines more
powerful, relieve humans of tedious tasks, and

s May even improve upon human performance.
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Learning in Neural Networks

There are many forms of neural networks. Most operate by passing
neural *activations’ through a network of connected neurons.

One of the most powerful features of neural networks is their ability to
learn and generalize from a set of training data. They adapt the
strengths/weights of the connections between neurons so that the
final output activations are correct.

There are three broad types of learning:

1. Supervised Learning (i.e. learning with a teacher)

2. Reinforcement learning (i.e. learning with limited feedback)
3. Unsupervised learning (i.e. learning with no help)

There are most common learning algorithms for the most common

types of neural networks.
9

A Brief History

. 194d3 Il\/IcCuIIoch and Pitts proposed the McCulloch-Pitts neuron
mode

e 1949 Hebb published his book The Organization of Behavior, in
which the Hebbian learning rule was proposed.

* 1958 Rosenblatt introduced the simple single layer networks now
called Perceptrons.

* 1969 Minsky and Papert’s book Perceptrons demonstrated the
limitation of single layer perceptrons and almost the whole field
went into hibernation.

e 1982 Hopfield published a series of papers on Hopfield networks.

* 1982 Kohonen developed the Self-Organising Maps that now bear
his name.

e 1986 The Back-Propagation learning algorithm for Multi-Layer
Perceptrons was rediscovered and the whole field took off again.

e 1990s The sub-field of Radial Basis Function Networks is
developed.

e 2000s The power of Ensembles of Neural Networks and Support
10 Vector Machines becomes apparent.
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A Brief History

1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron
model

Warren S. McCulloch
(Nov., 16, 1898 — Sep., 24, 1969)

W. McCulloch and W. Pitts, 1943 "A Logical Calculus of the Ideas Immanent

in Nervous Activity". In :Bulletin of Mathematical Biophysics Vol 5, pp 115-
183.

American neurophysiologist and cybernetician

A Brief History

1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron
model

Walter Pitts
(23 April 1923 — 14 May 1969)

PRINCIPIA
MATHEMATICA
o a8

At the age of 12 he spent three days in a library reading
Principia Mathematica and sent a letter to Bertrand Russell
pointing out what he considered serious problems with the
firgt,half of the first volume.
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A Brief History

1949 Hebb published his book The Organization of Behavior The
Organization of Behavior, in which the Hebbian learning rule was

proposed.

Donald Olding Hebb
(July 22, 1904 — August 20, 1985)

Click to LOOK INSIDE!
|
The

Organization
of Behavior

The Organization of Behavior
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A Brief History

1958 Rosenblatt introduced the simple single layer networks now
called Perceptrons.

Frank Rosenblatt
(11 July 1928 — 1971)

2006 - LAWRENCE J. FOGEL
2007 - JAMES C. BEZDEK
2008 - TEUVO KOHONEN
2009 - JOHN J. HOPFIELD
2010 - MICHIO SUGENO
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A Brief History

* 1958 Rosenblatt introduced the simple single layer networks now
called Perceptrons.

Input Output
Layer Layer

15

A Brief History

« 1969 Minsky and Papert’s book Perceptrons demonstrated the
limitation of single layer perceptrons and almost the whole field
went into hibernation.

v,

Marvin Minsky
(born August 9, 1927)

Perceptrons

Seymour Papert
(born February 29, 1928) Perceptrans
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A Brief History

e 1982 Hopfield published a series of papers on Hopfield networks.

John Joseph Hopfield
(born July 15, 1933)

%
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'\/C
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Scanned at the American
Institute of Physics

A

He was awarded the Dirac Medal of the ICTP in 2001.

17 A Hopfield Net

A Brief History

e 1982 Kohonen developed the Self-Organizing Maps that now bear
his name.

Teuvo Kohonen
(born July 11, 1934)

- Self-Organizing
y Maps

18 2 e New ed.: 2001 S.OM




A Brief History
%982 Kohonen developed the Self-Organizing Maps that now bear
is name.

SizeX ,
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A Brief History

1986 The Back-Propagation learning algorithm for Multi-Layer
Perceptrons was rediscovered and the whole field took off again.

1990s The sub-field of Radial Basis Function Networks is
developed.

2000s The power of Ensembles of Neural Networks and Support
Vector Machines becomes apparent.

20
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Artificial Neural Networks

Lecture 3

Human Nervous System

» The human nervous system can be represented to
three stages as the following block diagram:

Neural
Receptors Network/ Effectors ——
Brain




The Human Brain

* The middle block of last block-diagram (Brain)

primary sensory area

primary motor area — secondary motor
P

- g and sensory area
anterior speech area T R i

(Broca's area) \ .

primary auditory area

posterior speech area

/ (Wernicke's area)

secondary
s~ visual area

primary visual area

€ 2007 Encyclopadia Britannica, Inc. secondary auditory area

Brains versus Computers

1. There are approximately 10 billion neurons in the human cortex,
compared with 10 of thousands of processors in the most powerful
parallel computers.

2. Each biological neuron is connected to several thousands of other
neurons, similar to the connectivity in powerful parallel
computers.

3. Lack of processing units can be compensated by speed. The typical
operating speeds of biological neurons is measured in milliseconds
(103 s), while a silicon chip can operate in nanoseconds (109 s).

4. The human brain is extremely energy efficient, using
approximately 10-1¢ joules per operation per second, whereas the
best computers today use around 10 joules per operation per
second.

5. Brains have been evolving for tens of millions of years, computers
have been evolving for tens of decades.
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» The real structure of the
human nervous corresponding
to last block-diagram.

It contains the neurons to
transfer the signal form the
receptors to brain and vice-
versa to the effectors.

Human Nervous System

2Up"3U B ABIM LYOT DODZ D

weays ulleAp

The Biological Neuron

(Apoq j182) BWOS
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The Biological Neuron

Dendrite Axon
terminal
button

Soma (cell body)

Nucleus

Myelin sheath

6 2000 John Wiley & Sons, Ine

Components of Biological Neuron

information enters
T nerve cell at the
{ synaplic site on
| the dendrit ]
(s\'-mpsc-l e axon :er-»una{

- information
Hillock carried 1o
other cells__

axon -
-:\ output
propagated action potentials ., #
| - leave the soma-dendrite axonb h
complex 1o travel 1o Ll
the axon terminals

synapse 2

nucleus

input

—

1. The majority of neurons encode their activations or outputs as a series of brief
electrical pulses (i.e. spikes or action potentials).

2. The neuron’s cell body (soma) processes the incoming activations and converts
them into output activations.

3. The neuron’s nucleus contains the genetic material in the form of DNA. This
exists in most types of cells, not just neurons.
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Components of Biological Neuron

4. Dendrites are fibres which come from the cell body and provide the receptive
zones that receive activation from other neurons.

5. Axons are fibres acting as transmission lines that send activation to other
neurons.

6. The junctions that allow signal transmission between the axons and dendrites are
called synapses. The process of transmission is by diffusion of chemicals called
neurotransmitters across the synaptic cleft.

Mitochondrion

Synaptic  Synaptic Dendrite

vesicle gap

Neurotransmitter

Level of Brain Organization

There is a hierarchy of interwoven levels of organization:
1. Molecules and lons

. Synapses

. Neuronal microcircuits

. Dendrite trees

Neurons

. Local circuits

. Inter-regional circuits

. Central nervous system

0N U WN

The ANNSs we study in this module are crude approximations to
levels 5 and 6.
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The McCulloch and Pitts Neuron

L » L » out
J ]

This is a simplified model of real neurons
known as a Threshold Logic Unit.

The McCulloch and Pitts Neuron

ing

m; “—=—=__%____

L, r L, out

in

n

1. A set of synapses (i.e. connections) brings in activations from other

neurons.

2. A processing unit sums the inputs, and then applies a non-linear
activation function (i.e. squashing/transfer/threshold function).

3. An output line transmits the result to other neurons.
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The McCulloch and Pitts Neuron Equation

L ———4 ) |sign —— Y y =sign O x;)
i=1

o N y =sign (), x;—0)
sign y ;

The McCulloch and Pitts Neuron Analysis

* Note that the McCulloch-Pitts neuron is an extremely
simplified model of real biological neurons. Some of its missing
features include: non-binary inputs and outputs, non-linear
summation, smooth thresholding, stochasticity, and temporal
information processing.

* Nevertheless, McCulloch-Pitts neurons are computationally
very powerful. One can show that assemblies of such neurons
are capable of universal computation.
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Artificial Neural Networks

Lecture 4

Networks of MeCulboeb-Fitts Nearons

The McCulloch and Pitts (M_P) Neuron

| L, out




Networks of M-P Neurons

One neuron can’t do much on its own, but a net of these neurons ...

Xli /_\
Xy :\K 2 )l
Xni
it Neuron ) jth Neuron
|
i-j Synapse
X = Yi Wi Xi = YiW;

Yi = Sgn(z X — )
=1

Networks of M-P Neurons

We can connect several number of McCulloch-Pitts neurons together,
as follow:

Input layer

An arrangement of one input layer of McCulloch-Pitts neurons feeding
forward to one output layer of McCulloch-Pitts neurons as above is

known as a Perceptron. .y




Implementing Logic Gates with M-P Neurons

According to the McCulloch-Pitts Neuron properties we can use it to
implement the basic logic gates.

Not And OR
in | out In, | in, | out In, | in, | out
0 1 1 1 1 1 1
011 1100 101
o110 0|11
0o 0]O0 0|00

What should we do to implement or realize a logic gate,
Not/AND/OR, by N.N.?

Implementing Logic Gates with M-P Neurons

What should we do to implement or realize a logic gate,
Not/AND/OR, by N.N.?

All we need to do is find the appropriate synapses (connection) weights
and neuron thresholds to produce the right outputs corresponding to
each set of inputs.

Two solutions can be introduced for this problem:

1. Analytically Approach
2. Learning Algorithms




Find Weights Analytically for NOT

6
x—O &Y

y =sgn(xxw—6)

Not
in out
0 y=sgn(w-6)=0 = w-6<0 = w<¥é
0 1 y=sgn(-0)=1 = 0<0

S0 [g=—05] = w=-1

Find Weights Analytically for AND gate

X W, o
X, W

2

And
In, | in, | out
1] 1 [ 1] y=sgnw,+w,-0)=1= w,+w,>6
110 |0 ]| y=sgn(w,—-6)=0 = w, <60
0| 110 |y=sgn(w,-0)=0 = w, <8
0 | 010 [y=sgn(-0)=0 = 6>0

so: [9=15] [w,=w,=1 °




Find Weights Analytically for XOR gate

x—OM g

~O>>_ y Y =5gn(% X W, + X, X W, —6)
X, -

2

XOR

In, | in, | out

y=sgn(w, +w, -0)=0= w, +w, <6

y =sgn(w, —6) =1 = w,>60

y=sgn(w,-0)=1 = w,>0

O|Fr,|O|kF
Ok | |O

y=sgn(-6)=0 = 0>0

But, the 1%t equation is not compatible with others.

Find Weights Analytically for XOR gate

New questions:

* How can compute the weights and thresholds?

* Is analytically solution reasonable and practical or not? 10




A New Idea: Learning Algorithm

Linearly separable problems:

Not AND

A New Idea: Learning Algorithm

Why is single layer neural networks capable to solve the linearly
separable problems ?

Xl 4’@ W (9

4©>(>— Y y=sign(x xw, +X,xW, —6)
X, "

iwixi -6,>0

Zzlwixi -0=0
i=1

_|_

iwixi -6, <0
i=1




What is the goal of learning algorithm?
We need a learning algorithm which it updates the weights w; (w) so

that finally (at end of learning process) the input patterns lie on both
sides of the line decided by the Perceptron.

=
.

L

W *x -0
-
\\
.
\\\
\\

.

N\

Learning Algorithm

1(3}0): 0 |

Step: 1

Step: 3

13

Perceptron Learning Rule:

Learning Algorithm

W(t+1) = w(t) + 7(0)[d (t) - sign(w(t) e x(t) J]x(t) |

Desired Output: d (t) = {

n(t) >0: Learning rate

+1 if x(t) in class +
-1 If x(t) in class —

14




Preparing the Perceptron for Learning

x0=0 %0 %) Y,
y
w(t)=(b(t) w(t) w, (1)) X, -

b(t): bias
y(t): Actual Response of N.N.

15

Preparing the Perceptron for Learning

Training Data: 1
(x().d®) ﬁ
(x(2).,d(2)) X,

Wl
~ £>5% y
(x(p).d(p)) X, "

W(t +1) = w(t) +7(t)[d (t) - sign(w(t) e x(®)" Ix(t)|

16




Learning Algorithm

1. Initialization Set w(0)=rand. Then perform the following computatig

for time step t=1,2,...
2. Activation At time step t, activate the Perceptron by applying
input vector x(t) and desired response d(t)
3. Computation the actual response of N.N.
Compute the actual response of the Perceptron

y(t) = sign (w(t) - x(t)")

4. Adaptation of weight vector Update the weight vector of the
perceptron

w(t+1) = w(t)+ h(t) [d(®)-y(t) ] x)
5. Continuation and return to 2.

Learning Algorithm

Where or When to stop?
There are two approaches to stop the learning process:

1. Converging the generalized error to a constant value.
2. Repeat the learning process for predefined number.

(x@,d()

(X(%),d(Z)) . GE,:i[ol(t)—sign(v_v(t)°5(t)T)]2

(x(p).d(p))

18




Training Types

Two types of network training:

Sequential mode (on-line, stochastic, or per-pattern)
Weights updated after each pattern is presented
(Perceptron is in this class)

Batch mode (off-line or per-epoch)
Weights updated after all pattern in a period is presented

19

15t Mini Project

. By using the perceptron learning rule generate a N.N. to represent a
NOT gate.

. By using the perceptron learning rule generate a N.N. to represent a
AND gate.

. By using the perceptron learning rule generate a N.N. to represent a OR
gate.

. Please show that the generalized error converge to constant value after
a learning process.

. Please test the above N.N.s by testing data?

. Please check the above N. N.s with data which added to noise.

. Repeat the learning process for above N.N.s in both with and without
bias.

. Please plot the updated weights.

20

10
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Artificial Neural Networks

Lecture 5

Aetivation Fanetions

Unipolar Binary Function

F(u)= 1 u=0 It is obvious that this activation
0 u<o function is not differentiable.
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Unipolar Sigmoid Function

0.8-

0.6 -

0.4-

0.2-

F(u)= g>0 = F’:a—:gF(l—F)

1+e™ %’

Unlpolar FIeX|bIe Function

UpIFIIFt
T

al F’=%=F(2|a|—F)
P = e 220 =1 | & —_
Y ||( F)




Bipolar Binary Function

Bipolar Binary Function
T T

F(u)

_ +1 ux0 It is obvious that this activation
-1 u<0 function is not differentiable.

Bipolar Slgm0|d Functlon

Bpl Sigmoid Functiol
T
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Bipolar Flexible Function

ible Function

olar Flex

\\\\\\\\\\\\\\\\\\\\\\\\\

Bi

F'=1-aF?

1(F'u—F)

F =

11—

al+re ™

F(u)

Linear Function

= F'=g¢g

F(u)=gu
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Gaussian Function




Artificial Neural Networks

Lecture 6
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Multi-Layer Perceptron




Feed Forward Equations

What are the learning rules or algorithms to tune the N.N. weights?
» Unsupervised Learning Algorithms

* Supervised Learning Algorithms




Learning Rules

What is the Goal of N.N. learning?

The learning algorithm introduces an approach to achieve

the zero error signal. Where, Error Signal is:
e(k) =d(k)—-y(k)

Also, the above goal can be obtained by minimizing the
following cost function.

E =Zp:%e(k)2

Learning Rules

Which parameters have effect in optimizing the above
cost function? W

o O Dy dw

/

: Output I;r)?er
Xn —{( )V . 7/

Input layer A\

E

i%(d(k)—y(k»z =i§(d(k)— f (w(k)x" (k)

6




Learning Rules

So, the N.N. can be optimized by minimizing the corresponding
cost function with respect to the synaptic weights of network.

According to above explanation, Widrow and Hoff in 1960
proposed a new method to update the weights based on delta
rule.

Aw, (k) = ne(k)x, (k)

w, (k +1) = w, (k) + 7e(k)x, (k)

Learning Rules

Hebbian Learning rule:

Hebb’s postulate of learning is the oldest and most famous of all learning
rules.
His theory can be rephrased as a two-part as follows:

1. If two neurons on either side of a synapse (connection) are
activated simultaneously (i.e. synchronously), then the strength of that
synapse is selectively increased.

2. If two neurons on either side of a synapse are activated
asynchronously, then that synapse is selectively weakened or
eliminated.




Learning Rules

Mathematical Model of Hebbian Learning rule:
According to the Hebb’s postulate the synaptic weight has
relation with pre-synaptic and post-synaptic activities.

Aw; (k) = F(y, (k),x; (k)

As a special case, we can rewrite it as follow:
Aw,

ij

Aw; (k) =ny, (k)xj (k)

Learning Rules

From this figure we can see that the repeated application of the
input signal (pre-synaptic activity) x; leads to an exponential
growth that finally drives the synaptic weight into saturation.

To avoid such a situation from arising, we need to impose a limit
on the growth of synaptic weights. One method for doing this is to
introduce a nonlinear forgetting factor into the formula for the
synaptic adjustment (Kohonen, 1988):

Aw; (k) = 7y; (K) x; (k) — ay; (K)w; (k) = ay; (K[ x; (k) — w; (k)]

w; (K +2) = w; (K) + Aw; (K) = 72y, (K)x; (K) + (- a; (k) w; ()

10

O<ax<l




Back-Propagation Algorithm

We look for a simple method of training in which the weights are
updated on a pattern-by-pattern basis (online method).

The adjustments to the weights are made in accordance with the
respective errors computed for each pattern presented to the
network.

The arithmetic average of these individual weight changes over the
training set is therefore an estimate of the true change that would
result from modifying the weights based on minimizing the cost
function E over the entire training set.

E :% PHG)

jeO.L.

11

Back-Propagation Algorithm

So, by using the Gradient Descent method we can introduce the
following rule defined as Delta rule (MIT rule):

__0E(n)
Aw; (n)=-n ow, ()
dm v;(n) = iji (n)y;(n)

. yj(n) =®; (Vj(n))

—o ¢l

ej(n) :dj(n)_yj(n)

12




Back-Propagation Algorithm

oE(n)

AWji (n)=-n ow. (n)

In words, gradient method could be thought of as a ball rolling down
from a hill: the ball will roll down and finally stop at the valley.

1

09+
o8+
0.7+ i
Gradient/direction
os i

0.4f
03k
0.2F
o1F W(t+

o L L L
-1 -08 -06 -0.4 -0z 0.2 0.4 06 0.8 1

13

Back-Propagation Algorithm
Vj(n)ZZWji(n)yi(n)

yj(n):(”j (Vj (n)

E:% > e(n)

jeO.L.

OE(n)
6Wji (n)

AWji (n)=-n

ej(n) :dj(n)_yj(n)

OE(n) _ 0E(n) de;(n) dy;(n) ov,(n)
ow; (n)  de;(n) ay;(n) av;(n) ow;(n)

I l
e,(n) -1 Y, (n)
o', ()

14




Back-Propagation Algorithm

Aw;; (n) =n€;(n)e'(v;(n))y; (n) =715, (n)y; ()

g;(n)

6;(n) : Local Gradient

15

Back-Propagation Algorithm

OE(n) _OE(n) de(n) oy*(n) au*(n)
awi(n) " de(n) ay’(n) au*(n) ow?(n)

AW (n) = -7

{Awf (n) =n.e(n).f;u* ).y
AWZ(n) = n.e(n). f,(u(n)).y:

16

AW (n) = n.(n). f;(u*(n)).y"




Back-Propagation Algorithm

AW (n) = EM) _ OE(N) Ge(n) dy*(n) au*(n) dy'(n) ou’(n)

aw'(n) " de(n) ay*(n) au”(n) y'(n) "au'(n) awi(n)

AW(n) = 7.e(n). F(u? () w2, £(ut (n)).y°

17

Back-Propagation Algorithm

uo yO ul

AW (n) = 77.(n). f5(u* (n)).wg. Uy (n)).y;

AW, (n) = n.(n). £;(u*(n))wy. £, Uz (n)).y;
AWy, (n) = 77.8(n). 5 (U’ ().-ws. £, (uz (n).y;
AW, (n) =77.8(n). F,(U* () W;. T/(U()).y;

18




Back-Propagation Algorithm

[Awt (M., = ke fem Lo [ ) L w2 L [t o) L [y L

At (m)],., = 7k oML ) Lo (w2 Lo [ o L. )ly° L

19

2nd Mini Project

1. By using the MLP and Hebbian learning rule generate a N.N. to
represent the AND and XOR gates.

2. By using the MLP and Kohonen learning rule generate a N.N. to
represent the AND and XOR gates.

3. By using the MLP and Back-Propagation learning rule generate a
N.N. to represent the AND and XOR gates.

4. Please show that the generalized error converge to constant value
after a learning process.

5. Please test the above N.N.s by testing data?

6. Please check the above N.N.s with data which are added to noise.

7. Please plot the updated weights.

20




Artificial Neural Networks

Lecture 7

Sme Notes on Baa»g-zoﬁcycy/aﬁm

Learning Rate

The smaller we make the learning-rate parameter 7, the smaller will
the changes to the synaptic weights in the network be from one
iteration to the next and the smoother will be the trajectory in weight
space.

If, on the other hand, we make the learning-rate parameter n too
large so as to speed up the rate of learning, the resulting large
changes in the synaptic weights assume such a form that the network
may become unstable (i.e., oscillatory).

Solution: A simple method of increasing the rate of learning and yet
avoiding the danger of instability is to modify the delta rule by
including a momentum term, as shown by’ (Rumelhart et al., 1986a)

Aw, () =78, (n)y, (n) + aAw,, (n-1)




Generalized delta-rule

8m) y,(m)

Awj;(n) =nd;(n)y;(n) + cAw; (n—1)

a . momentum constant

Aw, () = 75, ()Y, (1) + aAw, (0)

Ay (2) = 16, (2 y,(2)+ adw, (1) - n
=10;(2)y;(2) +ans;Q)y;1) === Aw;(n)= Uzanité‘j ®)y;(t)

AW, (3) =18, (3)Y, (3) + aAw,,(2) }

_ Nt OE(t)
AW, (n) = 77;05 o, ) 3

Generalized delta-rule

n . OE(t
AWji(n):_UtZO:a —8WJ,((3)

Based on this relation, we may make the following insightful observations
(Watrous, 1987; Jacobs, 1988; Goggin et al., 1989):

1. The current adjustment wj; represents the sum of an exponentially weighted time
series. For the time series to be convergent, the momentum constant must be
restricted to the range O=<|a < 1.

- When a is zero, the back-propagation algorithm operates without momentum.
- Note also that the momentum constant « can be positive or negative, although
it is unlikely that a negative « would be used in practice.




Generalized delta-rule

- nt OE
AW, (n) =778, (n)y, (n) + aAw, (n—1) iji(n)=—n§a W(zt))

2. When the partial derivative has the same algebraic sign on consecutive
iterations, the exponentially weighted sum Aw;; grows in magnitude, and
so the weight w;; is adjusted by a large amount. Hence the inclusion of
momentum in the back-propagation algorithm tends to accelerate
descent in steady downhill directions.

3. When the partial derivative has opposite signs on consecutive iterations, the
exponentially weighted sum Aw;; shrinks in magnitude, and so the weight w;; is
adjusted by a small amount. Hence the inclusion of momentum in the back-
propagation algorithm has a stabilizing effect in directions that oscillate in sign.

Sequential Mode and Batch Mode

Sequential Mode or Pattern Mode:
In the pattern mode of back-propagation learning, weight updating
is performed after the presentation of each training data.

[x(),d @]

[x(2),d(2)]

an epoch : [x(k)., 4] AW(K) w(k +1) = w(k) + Aw(k)

[x(N),d(N)]

An Estimation

iji (n):%ZN:AWji(k) = AWp( )—_i;

e; (k)
a\N,-i(k) °

s Av‘vji(n)=—%2e (k)




Sequential Mode and Batch Mode
Batch Mode:

In the batch mode of back-propagation learning, weight updating is performed
after the presentation of all the training examples that constitute an epoch.

[x(@),d(@]
[x(2),d(2)]

1 N
an epoch : — AW= NZW(k) — w() =w(0) + Aw
k=1

[x(k),d (k)]

-

[x(N),d(N)]
131 ) LS s
Eav: Nkz;( j;lmej (k)] - 2N Z ej (k)

k=1 jeO.L.

N

) oe;(k

Sequential Mode and Batch Mode

From an “on-line” operational point of view, the pattern mode of training is
preferred over the batch mode, because it requires less local storage for
each synaptic connection.

Moreover, given that the patterns are presented to the network in a random
manner, the use of pattern-by-pattern updating of weights makes the
search in weight space stochastic in nature, which, in turn, makes it less
likely for the back-propagation algorithm to be trapped in a local
minimum.

On the other hand, the use of batch mode of training provides a more
accurate estimate of the gradient vector.

* So, the training process can be started with batch mode and then it can be
changed to sequential mode.




Stopping Criteria

« The back-propagation algorithm is considered to have converged when
the Euclidean norm of the gradient vector reaches a sufficiently small
gradient threshold.

The drawback of this convergence criterion is that, for successful trials,
learning times may be long.

»  The back-propagation algorithm is considered to have converged when
the absolute rate of change in the average squared error (AE,,) per epoch
is sufficiently small.

Typically, the rate of change in the average squared error is considered to be
small enough if it lies in the range of 0.1 to 1 percent per epoch;
sometimes, a value as small as 0.01 percent per epoch is used.

Stopping Criteria

« Another useful criterion for convergence is as follows. After each
learning iteration, the network is tested for its generalization
performance. The learning process is stopped when the generalization
performance is adequate.

10




Initializing in Back-Propagation

In Lee et al. (1991), a formula for the probability of premature saturation in
back-propagation learning has been derived for the batch mode of updating,
and it has been verified using computer simulation. The essence (core) of
this formula may be summarized as follows:

1. Incorrect saturation is avoided by choosing the initial values of the
synaptic weights and threshold levels of the network to be uniformly
distributed inside a small range of values.

2. Incorrect saturation is less likely to occur when the number of hidden
neurons is maintained low, consistent with a satisfactory operation of the
network.

3. Incorrect saturation rarely occurs when the neurons of the network
operate in their linear regions.

Note: For pattern-by-pattern updating, computer simulation results show
similar trends to the batch mode of operation referred to herein 1

Heuristics for making the Back-
Propagation Algorithm Perform Better

1. A M.L.P trained with the back-propagation algorithm may, in general,
learn faster (in terms of the number of training iterations required) when the
asymmetric sigmoidal activation function are used in neuron model. than
when it is non-symmetric.

Asymmetric function: (0(—V) = —(D(V)

12




Heuristics for making the Back-
Propagation Algorithm Perform Better

2. It is important that the desired values are chosen within the range of the
sigmoid activation functions.

Otherwise, the back-propagation algorithm tends to drive the free
parameters of the network to infinity, and thereby slow down the learning
process by orders of magnitude.

Bipolar Flexible Function
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Heuristics for making the Back-
Propagation Algorithm Perform Better

3. The initialization of the synaptic weights and threshold levels of the
network should be uniformly distributed inside a small range. The reason
for making the range small is to reduce the likelihood of the neurons in the
network saturating and producing small error gradients.

However, the range should not be made too small, as it can cause the error

gradients to be very small and the learning therefore to be initially very
slow.

14




Heuristics for making the Back-
Propagation Algorithm Perform Better

4. All neurons in the multilayer Perceptron should desirably learn at the
same rate.

Typically, the last layers tend to have larger local gradients than the layers at
the front end of the network. Hence, the learning-rate parameter 7 should be
assigned a smaller value in the last layers than the front layers.

* Neurons with many inputs should have a smaller learning-rate
parameter than neurons with few inputs.

15

Heuristics for making the Back-
Propagation Algorithm Perform Better

5. For on-line operation, pattern-by-pattern updating rather than batch
updating should be used for weight adjustments.

For pattern-classification problems involving a large and redundant
database, pattern-by-pattern updating tends to be orders of magnitude faster
than batch updating.

6. The order in which the training examples are presented to the network
should be randomized (shuffled) from one epoch to the next. This form of
randomization is critical for improving the speed of convergence.

16




Heuristics for making the Back-
Propagation Algorithm Perform Better

7. Learning-rate:

In previous lectures and projects we studied the important effect of learning-
rate in back-propagation learning algorithm. Here, some new methods to
improve the learning-rate value is introduced.

Conventional learning rate: n=n,

In each iteration the learning rate value decreases
(stochastic approximation):

n() ="
n
Search then converge: n(n) = /.
n
1+—
(Where, zis search time constant) T

)

Oy

0.01,

Standard LMS alzorithm

approximation

n
(log scale)

Stochastic
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Lecture 8

Flowibte Newal Networks

Typical Multi Layer Perceptron

y
o
Feed-forward Equations: Hidden Layers
0_ T 1 0 2 _ a2l
=[x x,] ut =w'y u?=wly u® = why?

y =u y'=fuh)  yr="f,u?) y’ = f,(u%)

2




Typical Multi Layer Perceptron

Hidden Layers
Back Propagation Equations:

OE(n) _  OE(n) de(n) oy’(n) ou’(n)

AW =1 SRy ™ Gty By (n) o) v ()

AW() = 7,.8(n). F(U3(M).y (n) ;

Typical Multi Layer Perceptron

N

Hidden Layers
Back Propagation Equations:

OE(n) OE(n) ode(n) oy*(n) ou’(n) oy’(n) ou®(n)

AW (n) = -7, =], R LSRN PR
ow*(n) de(n) oy*(n) ou*(n) dy“(n) ou“(n) ow"(n)

AW (n) = 7,.(n). £ (u”(n)).w* (). £, (U* (n).y*(n) 4




Typical Multi Layer Perceptron

ut y%".‘/

Hidden Layers
Back Propagation Equations:

)y CEO) ) 2e(n) y°() aw(n) oy’(n) au'(n) oy'(n) aw()

ow'(n) " Ge(n) oy’ (n) au’(n) ay’(n) "au*(n) ay(n) au(n) “owt(n)

AW () = 7,.(0). HUA M)W (). U)W (). U m).y° s

Flexible Neural Network

A Perceptron neural network which contains the flexible sigmoid
functions in neurons is known as Flexible Neural Network.

Increasing the flexibility of neural network structure induces a more
efficient learning ability.

f,, f, and f, are flexible function

w

. 6




Flexible Neural Network

()= L)y CEQ) 22(0) 30
a’(n) " de(n) oy’(n) oa’(n)

Aa*(n) = me(n)(f3(u®(n),a*(n)))’

Flexible Neural Network

, OE(n) __, OE(n) de(n) dy*(n) au’(n) ay*(n)

22a%(n) " de(n) oy (n) au*(n) ay?(n) da*(n)

Aa’(n) =-n

Aa*(n) = mye(n) £'(u*(n),a’ (n).w’(n).(f*(u*(n), a*(n)))’
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Flexible Neural Network

,CE(n) __,0E(n) de(n) dy’(n) du’(n) dy*(n) u*(n) dy'(n)

Aal(n) =—Th— =-1 3 3 2 2 1 1
oa’(n) oe(n) oy*(n) ou”(n) oy*(n) ou®(n) oy (n) dca(n)

Aa'(n) =nie(n) f'(u*(n),a’(n).w’(n). f'(u*(n), a* ().w*(n).(f*(u’ (n), a'(n)))’
9

A new method to tune the learning-rate

* Delta-bar-Delta
— This method is applicable to learning rates in MLP and F.MLP.

nk-D+a  S(k-1)5(K)>0

n(k) =<bn(k -1) o(k—-1o6(k) <0
0 Otherwise
10*<a<10™?

0.5<b<0.9
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Function Approximation

Many computational models can be described as functions mapping
some numerical input vectors to numerical outputs. The outputs
corresponding to some input vectors may be known from training
data, but we may not know the mathematical function describing the
actual process that generates the outputs from the input vectors.

Function approximation is the task of learning or constructing a
function that generates approximately the same outputs from input
vectors as the process being modeled, based on available training
data.

X — y=fx) —YVY




Function Approximation

X y=f () —Fy
et

L— ">~ ANN.

Function Approximation

Training Data is created of a finite set of input-output samples.

The above figure shows that the same finite set of samples can be
used to obtain many different functions, all of which perform
reasonably well on the given set of points.




Function Approximation

Since, infinitely many functions exist that match for a finite set of
points, additional criteria are necessary to decide which of these
functions are desirable.

Function Approximation

» Continuity and smoothness of the function are almost always
required.

* Following established scientific practice, an important criterion is
that of simplicity of the model, i.e., the neural network should have as
few parameters as possible.




Function Approximation

* Function f, passes through all the points in the graph and thus
performs best; but f;,which misses the outlier, is a much simpler
function and is preferable.

Function Approximation

In following figure, where the straight line (f,)performs reasonably
well, although f, and f; perform best in that they have zero error.
Among the latter, T, is certainly desirable because it is smoother and
can be represented by a network with fewer parameters.

 Implicit in such comparisons is the assumption that the given
samples themselves might contain some errors due to the method used
in obtaining them, or due to environmental factors.

Outgut Py




Function Approximation

Example 1: The desired function to be approximated is y(x)=0.4sin(x)+0.5.
A three-layered MLP is used as the learning prototype.

» The number of hidden neurons in these two hidden layers is set equal in
the simulation.

 The training and validation data sets, containing 200 samples each, are
randomly sampled from the input space, and the outputs are subjected to
WGN with a standard deviation of 0.2.

12— ---Iapproxin;nated mﬁclion usilng 3 neulrons =
1t

0.8
0.6
0.4+
0.2+

y(x)=0.4sin(x)+0.5

Function Approximation

Example 2: The desired function to be approximated is
Y(X)=X,2+sin(3X,)+2X,2sin(4X,)+X,SiN(4X,).
« Data points are randomly sampled adding WGN with a standard deviation

of 0.1 to produce training and validation data sets, each containing 100
samples.

N )
) ;

10




Function Approximation

Overfitting Problem

What is the minimum number of hidden layers in a multilayer
Perceptron with an input-output mapping that provides an
approximate realization of any continuous mapping ?

One curve relates to the use of few adjustable parameters (i.e., underfitting),
and the other relates to the use of many parameters (i.e., overfitting).

In both cases, we usually find that

(1) the error performance on generalization exhibits a minimum point, and

(2) the minimum mean squared error for overfitting is smaller and better
defined than that for underfitting.

Mean- .
squared Overfitting

error in
generalization
Underfitting

Number of epochs




Overfitting Problem

A network that is not sufficiently complex can fail to detect fully the signal
in a complicated data set, leading to underfitting.

But, a network that is too complex may fit the noise, not just the signal,
leading to overfitting.

- Overfitting is especially dangerous because it can easily lead to
predictions that are far beyond the range of the training data with many
of the common types of NNs.

- Overfitting can also produce wild predictions in multilayer perceptrons
even with noise-free data.

13

Overfitting Problem

Accordingly, we may achieve good generalization even if the neural network
is designed to have too many parameters, provided that training of the
network on the training set is stopped at a number of epochs
corresponding to the minimum point of the error-performance curve on
cross-validation.

Mean- .
squared Overfitting
error in
generalization
Underfitting

14
Number of epochs




Overfitting Problem

The best way to avoid overfitting is to use lots of training data.

* If you have at least 30 times as many training data as there are weights in
the network, you are unlikely to suffer from much overfitting.

* For noise-free data, 5 times as many training data as weights may be
sufficient.

* You can't arbitrarily reduce the number of weights due to fear of
underfitting.

* Underfitting produces excessive bias in the outputs, whereas overfitting
produces excessive variance.

15

3'd Mini Project

By using of an arbitrary neural network (MLP) approximate the function
which is presented in example 1.

1st Part of Final Project

By using of an arbitrary neural network (MLP) approximate the function
which is presented in example 2.

In this project You can use all hints which are introduced in previous lectures
but, you should explain their effects (score: 2 points)

16
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System Identification

The main objective of identification process is to propose specific neural
network architectures that can be used for effective identification of a
linear/nonlinear system using only input-output data.

Here, the main result is the establishment of input-output models using
feedforward neural networks.

— Y

{X(t) = f(x(®),u®)
y(®) =h(x(®)




System Identification

0 ety "
T
y(K)
u(k) N.N. N
T Identifier o~ 7

Sample time

The supervised training of a MLP may be viewed as a global nonlinear identification
problem, the solution of which requires the minimization of a certain cost function. The cost
function E is defined in terms of deviations (error) of the network outputs from

desired outputs, and expressed as a function of the weight vector w representing the

free parameters (i.e., synaptic weights and thresholds and ) of the network.

The goal of the training is to adjust these free parameters so as to make the actual outputs of

the network match the desired outputs as closely as possible 3

System Identification

Two facts make the MLP a powerful tool for approximating the
functions or identifying the systems:

Multilayer feedforward neural networks are universal approximators:

It was proved by Cybenko (1989) and Hornik et al. (1989) that any
continuous mapping over a compact domain can be approximated as
accurately as necessary by a feedforward neural network with one hidden
layer.

The back propagation algorithm:

This algorithm which performs stochastic gradient descent, provides an
effective method to train a feedforward neural network to approximate
a given continuous function over a compact domain.




State Space model for Identification

Consider a discrete plant as: x(k +2) = f (x(k),u(k))
y(k) =h(x(k))

If the_state of the system is assumed to be directly measurable, the
identification model can be chosen as:

ulk)

L)
2(k +1) = NN [2(K),u(K)] 5 F

y(k) = NNh[(X(k)] fffffffffffffffffffffffffffff ‘ CED_,_@_

L NN, z?! NN,

—
N
L
=)
=

State Space model for Identification

In this case, the states of the plant to be identified are assumed to be
directly accessible, and each of the networks NN; and NN,, can be
independently trained using static learning.




State Space model for Identification

Since x(k) is not accessible and the error can be measured only at the
output, the networks cannot be trained separately. Since the model
contains a feedback loop, the gradient of the performance criterion
with respect to the weights of NN; varies with time, and thus dynamic
back propagation needs to be used.

u(k)

1 s Hz

State Space model for Identification

In this structure, the states of the N.N. model provide an approximation or
estimation to the states of the system.

A natural performance criterion for the model would be the sum of the
squares of the errors between the system and the model outputs:

E(k) = %zny(k) ~ 900 = Je0|f

Dynamic Back Propagation:

W €Ny —s Ay =~y é’vf ((I;))
dE (k) ", BE (k) dz;(k)
e AW = = :
W, e NN, T G ) e (), ()

dzj(k)_i oz;(k) oz, (k-1 o;(k)
dw, SFoz, (k-1 ow, ow,




State Space model for Identification

Example 1:  X;(k +1) =x,(k)(1+0.2u(k))
X,(k +1) =-0.2x,(k ) +0.5x ,(k ) +u(k)

y (k) =03(x, (k) +2x ,(k))’

Xy(k +1)=NN , [X, (k). %, (k ).u (k)]

Xy (K +1) = NN, [, (k),X, (k).u (k)]
y (k) =NN, [X,(k), X, (k)]

w

25 b

v

* Training was done with a random
input uniformly distributed in [—1,1] *F!

n

« The identification model was tested
with sinusoidal inputs

Input-Output model for Identification

Clearly, choosing the state space models for identification requires the use of
dynamic back propagation, which is computationally a very intensive procedure.
At the same time, to avoid instabilities while training, one needs to use small
learning rate to adjust the parameters, and this in turn results in long convergence
times.

Input-Output Model of plant:

Consider the difference Equation corresponding to a typical linear plant:

y0)=Yayk-i)+ S puk-i)

10




Input-Output model for Identification

n n-1
Linear Model: Y(k)=zaiY(k—i)+zbjU(k—j)
i-1 =i

yk+D=h[Y, (k -1+)U  (k -1 +1)] 1

Input-Output model for Identification

5x(k+1):ixu5x(k)+ixu5u(k)
ox ot au et
S {x(k+1):f(x(k),u(k)) s, X y
"1y () =hx (k) 5y(k):2—hx ox (k)
X 0

c

Theorem Let S, be the nonlinear system, and S;,...i,q 1t linearization
around the equilibrium point. If Sy;....i,eq IS Observable, then S is locally
strongly observable. Furthermore, locally, S, can be realized by an input-
output model.

c
Observability Matrix ¢ = cA

CA n-1
12




Input-Output model for Identification

Neural Network Implementation:

If strong observability conditions are known (or assumed) to be satisfied in the system's
region of operation with N state variables, then the identification procedure using a
feedforward neural network is quite straightforward.

At each instant of time, the inputs to the network consisting of the system's past n input
values and past n output values (all together 2n), are fed into the neural network.

The network's output is compared with the next observation of the system's output to
yield the error

ek +) =y (K +)-y(k +D =y (k +)-h[Y,(k —n+,U , (k —n +D)]

The weights of the network are then adjusted using static back propagation
to minimize the sum of the squared error.

13

State Space model for Identification

X, (k +1) =0.5x,(k ) +0.2x, (k )x , (k)
X,(k +1) =-0.3x,(k)+0.8x ,(k)+u(k)

y (k) =x, (k) +(x ,(k))’

The linearized system around ox,(k +1) =0.50x, (k)
the equilibrium point: 6%, (k +1) =-0.36%,(k ) +0.80x ,(k )+ su(k)
oy (k) =0ox,(k)

Example 2:

And its observability:

_(bo . ful rank i’
%o o5/ ’

14




State Space model for Identification

* A neural network was trained to implement the model (4-12-6-1).

* The system was driven with random input u (k ) € [-1,1]

u(k) y (k +1)
Plant .
A5

Yk+1) v e(k+1) y

State Space model for Identification

* A neural network was trained to implement the model (4-12-6-1).

* The system was driven with random input u (k ) € [-1,1]

u(k) y (k +1)
Plant ‘
A5
[Sa] sk
z
yo =

Yk+1) v e(k-+1) y

3
sb
8

- 5




2"d Part of Final Project

By using of an arbitrary neural network (MLP) identify the discrete
nonlinear plant which is presented in example 2 (Score: 1 points).

* By using a test signal, show that the N.N. identifier perform a appropriate

input-output model of plant.
» By using of the PRBS signal, repeat the identifying procedure and
compare the results.

The material of this lecture is based on:

Omid Omidvar and David L. Elliott, Neural Systems for Control,
Academic Press; 1st edition (1997).
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NN-based Control

One of the most important applications of
N.N. is its employment in control theory.

In most cases, the ordinary control theory
cannot be easily applied, due to the presence
of uncertainty, nonlinearity or time varying
parameters in real plants.

N.N. can overcome these problems with
interesting properties such as parallel
processing, flexibility in structure and real
time learning.

Generally, the NN-based control is called
neuromorphic control




NN-based Control

Classical Control:

u(t)

N.N. Controller: 1st Structure

B B e
e(k)

NN-based Control and Specialized
learning

N.N. Controller: 1st Structure

G
»

. y(K)
v ﬂ =




NN-based Control and Specialized
learning

r(k)
e(k)

[

Forward Equations:
ut =w'y’
y'=f,(u)
u? = wl y1
u(k) =y* = f(u?)
x(k +2) = f (x(k),u(K))
{y(k) =h(x(k)) 5

NN-based Control and Specialized
learning

saknara Equations: (k) =r()=y() v E== Y |e(f
k

A () - TG oy(K) 2u(k) oy (k) au’ (k)
awi(k) " au(k) ay?(k) au?(k) ow? (k)

Plant Jacobi

B _ L ay(k) au(k) ay(K) au’(k) ay'(k) au'(k)
A0 ==150300 =8 2u(k) 2y2(00) E(K) By (K) ) W k) o

Plant Jacobi




Plant Jacobian Computation

Plant Jacobian Computation:

Trmethod: o ay(k) _ Ay(k) _ y(k) - y(k-1)
P ouk)  Au(k)  u(k)-u(k-1)

Drawback:  u(k) »u(k-1) = J, -

2" method:

3 29k _ sign[y(k) - y(k-1)]
P ou(k) signfu(k)-u(k-1)]

Drawback: In additional to the above drawback, this method can
perform an oscillating behavior in learning process. 7

Plant Jacobian Computation

Plant Jacobian Computation:

/\

/ N\
NN/dent}Qer
AR %_

3" method: Using the NN identifier

r(k)

3 k) _ oy, (k)
P ou(k) au(k)




Model Reference N.N. Adaptive Control

r(k)

TDL

Note: This method is useful when you can realize the desire
performance as a Reference model. 9

Self Tuning PID Control

PID controller has been widely used in industry. The discrete time PID
controller usually has a structure described by the following equation:

u(k) =k,e(k) +kp [e(k) —e(k —1)] +k, z(k)

z(k) =z(k -1 +e(k)
The conventional PID controller cannot be useful in deal with
uncertain, nonlinear and/or time varying plants. So, the self tuning PID

controller can be proposed to tackle this crucial problem due to the real
time parameters adjustment.

10




Self Tuning PID Control

e(k-1)

u(k) = k,e(k) +ko [e(k) —e(k —1)]+k, 2(k)
2(K) = z(k —1) +e(K)

11

Learning in Self Tuning PID Control

e(k-1)

Ak, = ﬂakp ﬂeau(k)lakp(k) ne(k).J,e(k)

_E_ay(k) au(k) o
Ak, = ”ak[, _neau(k).akD(k)_n.e(k).Jp.[e(k) e(k -1)]

_ ok oy(k) odu(k) _
Ak, =-n o —77e—(,§u(k).—6kI © ne(k).d,.z(k) 12




Self Tuning PID Control

Example: Consider a servo model of the robot manipulator with following
dynamic equation:

y(k)=02[ y*(k=2)+ y(k —1) |+ 0.25[ y(k — 2) +u(k —1)]+0.225sin (y(k —1) + y(k - 2))

0.6}
0.5
o4l
0.3
0.2

0.1

0
0 100 200 300 400 500 600

Output responses using conventional PID (Reference input is a sine wave ) 13

Self Tuning PID Control

y(k)=02[ y*(k=2)+y(k—1) |+ 0.25[ y(k — 2) +u(k —1)]+0.225sin (y(k —1) + y(k - 2))
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Output responses using self tuning PID (Reference input is a sine wave ) 14




A Reliable Structure for Control

15t Step: Free parameters of the NN controller can be adjusted using the
identification architecture:

r(t)—

15

A Reliable Structure for Control

2nd Step: In this step, both the classical controller and the NN controller
produce the control effort signal.

Free parameters of the NN controller, which are adjusted in step 1,
should be adjusted again by employing the Specialized learning.

3rd Step: You can smoothly remove the classical controller, when the
closed loop control system performance is sufficiently suitable.
16




3'd Part of Final Project

In this project, you should find a practical plant in papers and by using of
NN controllers provide a suitable closed loop control performance.
(Score: 2 points)

 Inthis project you can use of any NN controllers structure which are
presented in this lecture.

* In this project you can use of any NN controllers which are introduced in
papers and text books (score: +1 point).

17
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Artificial Neural Networks

Lecture 12

KBocarrent Nearal Networks

Recurrent Neural Networks

The conventional feedforward neural networks can be used to
approximate any spatiality finite function. That is, for functions
which have a fixed input space there is always a way of encoding
these functions as neural networks.

For example in function approximation, we can use the automatic
learning techniques such as backpropagation to find the weights
of the network if sufficient samples from the function is available.

Recurrent neural networks are fundamentally different from
feedforward architectures in the sense that they not only operate on

an input space but also on an internal state space.

These are proposed to learn sequential or time varying patterns.




Recurrent Neural Networks

Recurrent Neural Networks,
unlike the feed-forward neural
networks, contain the feedback
connections among the neurons.

Three subsets of neurons are presented in the recurrent networks:

1. Input neurons
2. Output neurons
3. Hidden neurons, which are neither input nor output neurons.

Note that a neuron can be simultaneously an input and output neuron; such
neurons are said to be autoassociative. 3

Recurrent Neural Networks

Figure 1. An example of a fully connected recurrent neural network

Figure 2. An example of a simphe recurrent network 4




Recurrent Neural Networks

Forward Equations:
y°(k)=u(k)

ul(k): WOl(k)yO(k)+W rl(k)y;(k _l)
W (K)o (k) +w , (k)y;(k -1)

y'(k)=f,(u'(k))

u?(k) =w (k)y; (k) +wo, (k )y (k) y(k)=f u2(k))

Recurrent Neural Networks

1 2
e()=r()-y(k) = E=52 ek

Back Propagation Equations:

oE

AW, = —

kS n ow,

oE ou? eyt out

AW =B s pek) Y MY
OW g ou” 0y~ Ou” OW .

1 1
au =y O 4w %y« Dynamic Back-propagation
p*

o* 0*




Recurrent Neural Networks

Back Propagation Equations:

oE oy ou? oyt aut
AW ., =— =ne(k)———"+
S P PTLE VT
1 1
ot oy, u _ 1
=vi+w — =Y +W,
o, Yo + Wiy ow,, ow,, " ow,

Linear Prediction

A

yik-p) y(k-2) y(k)

Linear Prediction: [ Y{“|:l) |F
(k-p) e (k-2) (k-1) &k Discrete
— v — Time

P
¥ a; yik-i)
i=]

p
Y(k)=zaiY(k -i)
e(k):y(k)—)?(k):y(k)—iaiy(k )

The estimation of the parameters a; is based on minimizing a function of error.




Prediction using FF Neural Network

y(k)

F.F. Neural Network
structure for Prediction:

¥k

input layer hidden layer output layer

Prediction using Recurrent N. N.

Recurrent Neural .
Network architecture for

Prediction: Jocal feedback

TS
\y/

¥

local feedback

global feedback

10




Example for one step ahead Prediction

yk—n), yk-n+1), - y(k-n+p-1), y(k-n+p)

{
y(k-n+p) \

e(k-n+p)=yk-n+p)-J(k—n+p)]
}

It is used for back-propagatoin.

Window size: P

y(k-n), y(k—=n+1) -+ y(k—-n+p-1) y(k-n+p), y(k—n+p+1)

{
§(k-n+p+1) J

e(k—n+p+1)=y(k-n+p+l)-Jk-n+p+)|

11

Example for one step ahead Prediction

yk=n), -, y(k=p=1), y(k—p), - y(k=-2), yk-1)

y(k)

—>  x=Y(k)

12




4™ Mini Project

In this project, a typical time series like the Lorenz data should be employed
to one step ahead prediction by using of any neural network.

Time step = 0.01
Window size =5

X =o(y —X)
y=-Xz+r(x-y)
Z =xy —bz
r=4592, b=4 0=165 R /fw y
I S

13
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Artificial Neural Networks

Lecture 13

FBF Networks

Radial Basis Function
Radial functions are a special class of function. Their characteristic feature

is that their response decreases (or increases) monotonically with distance
from a central point.

Yi= ¢(Hx - Ci”)

A typical radial function is the Gaussian which in the case of a scalar input is

Bipolar Sigmoid Function
15 T T

0.5




Gaussian RBF

Radial Basis Function

7l
0.8F
_(ﬁ)z sl
— r
Yi=¢€ ’
0.2F
, -
6 -4
Radial Basis Function
1
08 . .
A Gaussian RBF monotonically
w decreases with distance from
04 the center.
0.2
% 4 3
[72 4 (x—c)’ A Multiquadric RBF monotonically
Y= increases with distance from the center.
r
) Multiquadric RBF
15 B
¢ = 0 1t 1
r= 1 0.5 B
-2 1.5 1 0.5 0 0.5 1 15 2




General RBFs

The most general formula for any radial basis function RBF is:
h(X,..)=¢ [(x -¢)R™'(x— c)] Often, R=r21.

Obviously, (x-¢)"R/(x-¢) is the distance between the input X
and the center € in the metric defined by R.

There are several common types of functions used:
The Gaussian: o(z) = e’
The Multiquadric: ~ ¢(z) = (1+ Z)O‘5

The invers Multiquadric: p(z)=(1+2)"

The Cauchy: p(z)=(1+2)"

RBF Networks

After the FF networks, the radial basis function (RBF) network

comprises one of the most used network models.

The construction of a radial-basis function (RBF) network in its most

basic form involves three entirely different layers.
The input layer is made up of source nodes (sensory units).

The second layer is a hidden layer of high enough dimension, which

serve a different purpose from that in a MLP.

The output layer supplies the response of the network to the activation

patterns applied to the input layer.




RBF Networks

The transformation from the input space to the hidden-unit space is

nonlinear, whereas the transformation from the hidden-unit space to the
output space is linear.

of|e-x)
RO

X

1ake] 1ndhno

7
o lx-x¥)

syur| parydiom

RBF Networks

In a RBF network there are three types of parameters that need to be
chosen to adapt the network for a particular task:

1. the center vectors ¢;

2. the output weights wy, £

3. the RBF width parameters 7;.

Hidden layer
Input layer (I neurons) Output layer
(M inputs) ) (J outputs)

exp(—a [x ¢




RBF Networks

Characteristics of a typical RBF neural network:

’]}
J}

I Number of neurons in the hidden layer i€ {1,2,...
J Number of neurons in the output layer j< {1,2,...
w; Weight of the ith neuron and jth output

o Radial basis function
a; Spread parameter of the ith neuron

x Input data vector

Input layer

Hidden layer
(7 neurons)

Output layer

¢; Center vector of the ith neuron (M inputs) e N ( ourputs)
/3 Bias value of the output jth neuron A\ I
¥; Network output of the jth neuron PN / \. .. ? S
- \ )/ \ L i / .
N N/ Y ,/ .
: X
A \\ /N
0 /;’ A S " N, * B,
-~ \\ ) /./ i s — 3,
o -\ S

exp(-a, |[x—e, ||:}

Training the RBF Networks

Feedforward equations of a typical RBF neural network:

X Input layer (7 neurons) Output layer
(M inpurs) Y (. ourpis)
=™ P Iy’ et N !
= . e VAR —_ j\ﬁ.
— e / N\ ]
A N /o N\ J
X, i \\ / . Y'J /, X
: N\, /,/ f \\ / :
—(Xﬁc" ) ) /%\\ /// \\\ .
N R SN L\
! - N2 e o)
x, \, / —
- ~‘.}\ _}/_/ "
’ 1 . -
il B owmy wy || 1 y! = expa [x—c|)
I 1
A~ | V2] B wy War || N1
y= . 1= . . . .
o 1
Yy B, wy Wy LV

Hidden layer

10




Training the RBF Networks

Back-propagation:

X y

Unknown Model
1
e =y=3 ) — E=-3¢'(k) 1,
k Vv

RBF Network —=(Z)
S
\
Y \ Trainin
AWU(k) ==, ok = me(k)M Algurilh?n
ow; ow;
OE p(k) ov'(k
Ac,(k) = —11. —=11,e(k) ‘Ml) % (&)
ac, dy, oc,
OE (k) oyl (k
By =, ZE = g ey 20 20
oa; dy, Oq,

11

Training the RBF Networks

Back-propagation:
74
—(x—¢) a(x—c)
XY HxTe)

y =e °

' (k) _oy'k) op oy _
oc op Oy oc

-’ {0!(//+0!Tl//}(—1)

(k) _oy!tk) g _
o, Op Oa,

_eﬂﬂ(x_cl_ )T (X_ci)

12




Comparison of RBF Networks
and MLP 11]

Radial-basis function (RBF) networks and multilayer perceptrons are
examples of nonlinear layered feedforward networks. They are
both universal approximators.

However, these two networks differ from each other in several
important respects, as:

1. An RBF network (in its most basic form) has a single hidden layer,
whereas an MLP may have one or more hidden layers.

2. Typically, the computation nodes of an MLP, be they located in a
hidden or output layer, share a common neuron model. On the other
hand, the computation nodes in the hidden layer of'an RBF network
are quite different and serve a different purpose from those in the
output layer of the network. 13

Comparison of RBF Networks
and MLP 1]

3. The hidden layer of an RBF network is nonlinear, whereas the output
layer is linear. On the other hand, the hidden and output layers of an
MLP used as a classifier are usually all nonlinear; however, when
the MLP is used to solve nonlinear regression problems, a linear
layer for the output is usually the preferred choice.

4. The argument of the activation function of each hidden unit in an
RBF network computes the Euclidean norm (distance) between the
input vector and the center of that unit. On the other hand, the
activation function of each hidden unit in an MLP computes the
inner product of the input vector and the synaptic weight vector of
that unit.

14




Comparison of RBF Networks
and MLP 1]

5. MLPs construct global approximations to nonlinear input-output
mapping. Consequently, they are capable of generalization in regions of
the input space where little or no training data are available.

On the other hand, RBF networks using exponentially decaying localized
nonlinearities (e.g., Gaussian functions) construct local approximations

to nonlinear input-output mapping, with the result that these networks are

capable of fast learning and reduced sensitivity to the order of presentation
of training data.

15

5t Mini Project

In this project, a chaotic time series is considered therein is the logistic map
whose dynamics is governed by the following difference equation

Window size = 5 x(n)=4x(n—1)(1-x(n-1))

* Compare the results with MLP neural networks.

16
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Artificial Neural Networks

Lecture 14

//0/0[/&/@/ Nearal Network

Hopfield Neural Network

A Hopfield net is a form of recurrent
artificial neural network invented by /ﬁ(
John Hopfield.

-
<]

Hopfield nets serve as content-addressable

units.

It can be used to solve the optimization
problems.

memory systems with binary threshold g




Hopfield Neural Network

A Hopfield network: TDL

TDL

U, (M) = 2wy, (1=1)+x, ()

yj(n) = fj(uj(n)) TDL
L~ yl

]
D

In Hopfield network the \
synaptic weights are X, ST = Y,

symmetric: _.\:%,j;;«:;
Wi = Wi — Ys

Also, in HN there are no
self feedback:

w; =0

Hopfield Neural Network

A Binary Hopfield network:

U, (M) = 3wy, (n=1)+x,(n)

i#]

. 1 u;(n)> 6,
y.(n): : uj(n)_ej or yj(n): yj(n_l) uj(n)zej
i 0 u;(n)<o, 0 0, (<6




Hopfield Neural Network

The energy E for the whole network can be determined from energy
function as the following equation:

1
E :_EZZWijyiyj _inyi +Z Y6,
i i i

So:  AE, :—(Zwijyﬁxi—eijAyi
j

Ay; is positive when the terms in brackets is positive; and Ay; becomes
negative in the other case.

Therefore the energy increment for the whole network AE will always
decrease however the input changes.

Hopfield Neural Network

So, the following two statements can be introduced:
1. The energy function E is a Lyapunov function.
2. The HNN is a stable in accordance with Lyapunov’s Theorem.

The ability to minimize the energy function in a very short
convergence time makes the HN described above be very useful in
solving the problems with solutions obtained through minimizing a
cost function.

Therefore, this cost function can be rewritten into the form of the
energy function as E if the synaptic weights wj; and the external input
X; can be determined in advance.




Hopfield Neural Network

Hopfield networks can be implemented to operate in two modes:

- Synchronous mode of training Hopfield networks means that all neurons
fire at the same time.

- Asynchronous mode of training Hopfield networks means that the neurons
fire at random.

Example: Consider a Hopfield network with three neurons

0 -04 02
W=-04 0 05
02 05 O

Let the state of the network be: y(0)=[ 1, 1,01]".

Hopfield Neural Network

x3

Example: «
0 -04 02 1 -
W=|-04 0 05| yo0)=|1 e —
R S Y
02 05 0 0 ///_
Synchronous Asynchronous mode
mode

Y(O=[LLOT" | y,(D=[0,1.0]" |y(D)=[0,L,0]" |y(H=[1,0,0]" |y(1)=[1,1,1]
y()=[0,0,0 7
y=Y5(1)=[0,0,0]"

P




State table of Hopfield N.N.

A Hopfield net with n neurons has 2" possible states, assuming that each neuron
output produces two values 0 and 1.

The state table for the above example Hopfield network with 3 neurons is given
below.

Init. state if state if state if
state N1 fires N2 fires N3 fires

000 100 000 000
001 101 011 000
010 010 000 011
011 o011 011 011
100 100 100 101
101 101 111 101
110 010 100 111
111 011 111 111

Hopfield N.N. as BAM

Hopfield networks are used as content-addressable memory or Bidirectional
Associative Memory (BAM). The content-addressable memory is such a device
that returns a pattern when given a noisy or incomplete version of it.

In this sense a content-addressable memory is error-correcting as it can override
provided inconsistent information.

The discrete Hopfield network as a memory device operates in two phases:
storage phase and retrieval phase.

During the storage phase the network learns the weights after presenting the
training examples. The training examples for this case of automated

learning are binary vectors, called also fundamental memories. The weights
matrix is learned using the Widrow-Hoff rule. According to this rule when an
input pattern is passed to the network and the estimated network output does not
match the given target, the corresponding weights are modified by a small
amount.

The difference from the single-layer perceptron is that no error is computed,
rather the target is taken directly for weight updating.

10




Widrow-Hoff Learning

Learning: The Widrow-Hoff learning rule suggests to compute the
summation block of the i-th neuron:

U, (M) = 2w, ¥, (=) + %, ()

i#]

There are two cases to consider:

u;(n)=0

0.1+u;,(n)
& =W, =W TV

n

y;(n-D)=0
u.(n)<0
(< 0.1-u,(n),  Where, n denotes the
& = Wj; =Wy +Tj number of neurons.
y;(n-D=1

Outer product Learning

Learning: Suppose that we wish to store a set of N-dimensional vectors
(binary words), denoted by {§ , #=1,2,..., M}. We call these M vectors
fundamental memories, representing the patterns to be memorized by the
network.

The outer product learning rule, that is, the generalization of Hebb’s
learning rule:

W :ﬁ[iéﬂﬁl - Mlj

From these defining equations of the synaptic weights matrix, we
note the following:

* The output of each neuron in the network is fed back to all other neurons.
* There is no self-feedback in the network (i.e., w;= 0).
* The weight matrix of the network is symmetric. (i.e., WT=W) 12




Learning Algorithm

Initialization: Let the testing vector become initial state x(0)

Repeat
-update asynchronously the components of the state x(t)

UM =YWy, (=D +x,(M)>0 = y, (n) =1

i#]
uj(n):ZWijyi (n_1)+xj(n)<0 =Y (n):()
i#j

-continue this updating until the state remains unchanged
until convergence

Generate output: return the stable state (fixed point) as a result. The

network finally produces a time invariant state vector y which satisfies

the stability condition: y = san(Wy +b)
13

Learning Algorithm

During the retrieval phase a testing vector called probe is presented to the
network, which initiates computing the neuron outputs and developing the
state.

After sending the training input to the recurrent network its output
changes for a number of steps until reaching a stable state.

The selection of the next neuron to fire is asynchronous, while the
modifications of the state are deterministic.

After the state evolves to a stable configuration, that is the state is not
more updated, the network produces a solution.

This state solution can be envision as a fixed point of the dynamical
network system. The solution is obtained after adaptive training.

14




Summary of Hopfield Model

The operational procedure for the Hopfield network may now be summarized as follows:

1. Storage (Learning). Let &, &,, ..., &, denote a known set of N-dimensional memories.
Construct the network by using the Widrow-Hoff or outer product rule (Le., Hebb's
postulate of learning) to compute the synaptic weights of the network.

The elements of the vector &, equal +1/-1. Once they are computed, the synaptic weights are
kept fixed.

2. Initialization. Let € robe denote an unknown N-dimensional input vector (probe) presented
to the network. The algorithm is initialized by setting

Vi) =& prope=1,-- -, N
where y;(0) is the state of neuron j at time n = 0.

3. Iteration until Convergence. Update the elements of state vector y(n) asynchronously
(i.e., randomly and one at a time) according to the rule

y(n+1)=sgn[w.y(n)]
Repeat the iteration until the state vector s remains unchanged.

4. Outputting. Let Y, .4 denote the fixed point (stable state) computed at the end of step 3.
The resulting output vector y of the network is

Y Yiixea 15

Summary of Hopfield Model

Example: Consider a Hopfield N.N. with 3 neurons, which we want store
two vectors (1,-1,1) and (-1,1,-1):

| 1 -1 100 | 0 -2 2
W=l | [1 -1 1]+ 1|[-1 1 -1]-2{0 1 0||==|-2 0 -2
1 -1 00 1 2 20

The threshold applied to each neuron is assumed
to be zero and the corresponding HNN has no
external input.




Summary of Hopfield Model

0 =2 2
w=12 o 2

2 -2 0

yo)y=1 11" -0 -1 0) >0 -1 1)
y) =(1 1 -1)) —=(-1 0 0) - (-1 1 1)
yo)y=(-1 1 1)) =0 0 -1)) > (-1 1 -1
yo)y=(-1 -1 1)) > 0 0) >(1 -1 1)
yo)=(1 -1 1) =0 0 1)) >(1 -1 1)
yo)y=(-1 -1 -1)" >0 1 0) > (-1 1 -1)

Therefore, the network has two fundamental memories.

17

Summary of Hopfield Model

Y3

¢L10) (1'1/
/i yo=(1 117 51 -1 1
@/ .11 | yo=(11 )" (-1 1)
(-1, 1,-1) -]

| WO 11 411

i o4 0¥

W ‘{:1-,_-1, 1 (l--l.l]’ ] y(O):(l 1 _1)T %(l 4 l)T
- YO=(-1 -1 )" (-1 1 )

(L) (1-1,-1)
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Genetic Algorithm

Lecture 15

Introduction to GA.

Optimization

In mathematics and engineering science, optimization, refers to choosing
the best element from some set of available alternatives.




Methods of Optimization

Main approaches to solve an optimization problem are:

* Newton’s Method

* Quasi-Newton method

* Gradient descent

» Gauss—Newton algorithm

* Levenberg—Marquardt algorithm

* Steepest descent

* Simulated Annealing (Monte Carlo)
* Genetic Algorithms

Genetic Algorithm (GA) is the most popular type of
Evolutionary Algorithm (EA).

Evolutionary Algorithm

Darwin’s Theory of Evolutionary:




History of Genetic Algorithm

Genetic Algorithms (GAs) are adaptive random search algorithm premised
on the evolutionary ideas of natural selection and genetic. The basic concept
of GAs is designed to simulate processes in natural system necessary for
evolution, specifically those that follow the principles first laid down by
Charles Darwin of survival of the fittest.

As such they represent an intelligent exploitation of a random search within
a defined search space to solve a problem.

Genetic algorithms originated from the studies of
cellular automata, conducted by John Holland
and his colleagues in 60s at the University of
Michigan. Research in GAs remained largely
theoretical until the mid-1980s, when The First
International Conference on Genetic Algorithms
was held at The University of Illinois.

Genetic Algorithm

GAs were introduced as a computational analogy of adaptive systems. They are
modeled loosely on the principles of the evolution via natural selection,
employing a population of individuals that undergo selection in the presence of
variation-inducing operators such as mutation and recombination (crossover).
A fitness function is used to evaluate individuals, and reproductive success varies
with fitness.

The Algorithms can be summarized as:

=

Randomly generate an initial population M(0)

Compute and save the fitness u(m) for each individual m in the current
population M(t).

3. Define selection probabilities p(m) for each individual m in M(t) so that
p(m) is proportional to u(m)

Generate M(t+1) by probabilistically selecting individuals from M(t) to
produce offspring via genetic operators (Crossover and Mutation)
Repeat step 2 until satisfying solution is obtained.

N

e

o




GA and Biological background

Anat f the Animal Cell
natomy of the Animal Cel The Cell Nucleus

Mitochondria
Microfilaments "~ "

Nuclear
Envelope

Nuclear
Nuclear 7 Pores
Pores
Plasma
—=Membrane

Golgi =~ A )
Apparatus B ~ " Chromatin

Cil

1. Randomly generate an initial
population

« Genetic information is stored in the
chromosomes.
 Each chromosome is build of DNA
« Chromosomes in humans form pairs
 The chromosome is divided in parts: genes
» Genes code for properties

GA and Biological background

2. Compute and save the fitness u(m) for each individual m in the current
population M(t).

3. Define selection probabilities p(m) for each individual m in M(t) so that
p(m) is proportional to u(m)

4. Generate M(t+1) by probabilistically selecting individuals from M(t) to
produce offspring via genetic operators (Crossover and Mutation)

MEIOSIS
DNA
Meiatic Repli
Division1 @ lng::e":m“hlnm
m o
Divigion 1

Meiotic.
Division 2

Coll
Division 2

QO

O
©
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Genetic Algorithm

GA s are useful and efficient when

e The search space is large, complex or poorly understood.

* Domain knowledge is scarce or expert knowledge is difficult to
encode to narrow the search space.

¢ No mathematical analysis is available.

Traditional search methods fail.

0

1

2

3

4

5

Genetic Algorithm

Basic algorithm of Genetic algorithm

START : Create random population of n chromosomes
FITNESS : Evaluate fitness f(x) of each chromosome in the population
NEW POPULATION (using Genetic operations)
0 SELECTION : Based on f(x)
1 RECOMBINATION : Cross-over chromosomes
2 MUTATION  : Mutate chromosomes
3 ACCEPTATION : Reject or accept new one
REPLACE : Replace old with new population: the new generation

TEST : Test problem criterium

LOOP : Continue step 1 — 4 until criterium is satisfied
10




Encoding Issue

Each choromosme contains a possible solution of optimization problem.
To define a possible solution in choromosms the encoding procedure
should be employed. The encoding methods can be classified as
follows:

« The binary encoding [oofof[1]1]o]1|1]1]o]1]1]
* Real-number encoding | 1205 | 864 | 726 | 440 |
« Integer encoding | + | 3 | 2 | 8 |

.\\\e%&

e~

//:oding space

solution space

feasible area

feasible

L 11

Crossover

Recombination (cross-over) can when using bitstrings schematically be
represented as:

=>

Crossover point

SSHSISISISIE

=SS =S =

=HIGIESESEESEES
ESESSESSInl=N =]

offspring

12




[rlo[r[rlo]o]r]

Mutation

[rlo[rlrlolr]r]

Mutation is anotehr operator which prevents the algorithm to be
trapped in a local minimum.

In the bitstring approach mutation is simply the flipping of one of
the bits.

13

Evaluation and Selection

new
population

chromosomes

| 1011101110

selection

roulette wheel

Crossover

| @m0 1010

encoding | 1100101010 |—— |

- [101110 |
Yy

{ [ 101110 1010]

| 0011011001
™1 1100110001 \ :

[oo110f1001] )

mutation

| 01 {o'gﬁm‘!

_evaluation

~_offspring

110010 1110

| 101110 1010|

| 0011001001

* decoding

fitness

computation / 14




Encoding Procedure

In G.A. preparing, first step is the encoding procedure. In this step we
encode the decision variables into binary string.

The length of string depends on the required precision. Consider
variable x; as

X; e[bj aj]

And the Required precision is n place after the decimal point.

The number of bits (m;) can be calculated using the inequality:

2" < (b-a)x10" < 2™ -1

15

Example for Encoding Procedure

Example: max f (X, X) =21.5+x sin(4zx,) + X, sin(207Xx,)

~3<x <121 41<x,<5.8

16




Example for Encoding Procedure

Example: max f (X, X) =21.5+x sin(4zx,) + X, sin(207Xx,)

~3<x <121 41<x,<5.8

(12.1-(-3))*10* =151000
2181 =131072 <151000 < 2*® —1=262143
m, =18
(5.8—4.1)*10" =17000
2'°1 216384 <17000 < 2"° —1=32767
m, =15
A chromosome: V. I000001010100101001I I101111011111110I

J
18 bit 15 bit 17

Mapping from binary to decimal

We can use the following equation to map a binary string to a real value:

. i . —a.
X; = a; +decimal (substring) x ——
27 -1

Forexample:  v; 000001010100101001 101111011111110

J
18 bit 15 bit

Binary Decimal (substring) | Real value

000001010100101001 5417 -2.6880

101111011111110 24318 5.3617

18




Initial Population

In GA process to solve an optimization problem in first step an Initial
Population should randomly be generated.

To generate the initial population firstly define a Population Size.

v, = [000001010100101001101111011111110) vy = [xy,x2] = [-2.687969,35.361633]
v = [001110101110011000000010101001000] vy = [xy,x2] = | 0474101,4.170144]
vy = [111000111000001000010101001000110) U3 = [xg,x2] = [10.419457,4.661461]
vs = [100110110100101101000000010111001] 4 = [xy,x2) = [ 6.159951,4.109598]
vs = [000010111101100010001110001101000) vs = [x1,x2) = [-2.301286,4.477282]
ve = [111110101011011000000010110011001] v = [x1, x2] = [11.788084, 4.174346}
v; = (110100010011111000100110011101101) vs = [x;,%2] = [ 9.342067, 5.121702]
pg = [001011010100001100010110011001100] vs = [x),x32] = [-0.330256,4.694977]
vy = [111110001011101100011101000111101] Vo = [x;,%2] = [11.671267,4.873501]
vyp = [111101001110101010000010101101010) v1o = [x1,x2] = [11.446273,4.171908]

19

Selection

Evaluation:

eval(vy) = f(-2.687969, 5.361653) = 19.805119
eval(vy) = f( 0.474101,4.170144) = 17.370896
eval(va) = f(10.419457,4.661461) = 9.590546

eval(vy) = f( 6.159951,4.109598) = 29.406122
eval(vs) = f(~2.301286,4.477282) = 15.686091
eval(ve) = f(11.788084,4.174346) = 11.900541
eval(v;) = f( 9.342067,5.121702) = 17.958717
eval(vg) = f(-0.330256, 4.694977) = 19.763190
eval(vo) = f(11.671267,4.873501) = 26.401669
eval(vip) = f(11.446273,4.171908) = 10.252480

20




Selection

Selection: (based on Roulette Wheel)

1.

2.

3.

Calculate the fitness value for each chromosome in the population
eval(v)=f(v;)
Calculate the total fitness for the population
F=Zf(v))
Calculate the selection probability for each chromosome of the
population
P=f(v)/F
Calculate the cumulative probability for each chromosome
qk:z‘kalpj

Generate a random number r in [0,1]
If r<q, select the first chromosome

and if q,_,< r <q, then select the chromosome v,.
21

Selection
In the last example:
10
The total fitness is F= Z eval(vy) = 178.135372
k=1

And the probability of a selection for each chromosome is:

pr=0.111180,  py=0.097515,  p3=0053839
ps= 0165077,  ps=0088057,  pg = 0.066806
pr=0.100815,  ps=0110945,  pg=0.148211
pio = 0.057554

22




Selection

In the last example:
The cumulative probability g, for each chromosome is:

g1 = 0.111180, g2 = 0.208695, g3 = 0,.262534
s = 0427611,  gs- 0515668,  ge = 0.582475
gr = 0.683200, gy =0794234, g = 0.942446
gio = 1.000000

Now we are ready to spin the roulette wheel 10 (population size) times, and
each time we select a chromosome. So, r sequence can be generated
randomly:

0.301431 0.322062 0.766503 0.881893
0.350871 0.583392 0.177618 0.343242
0.032685 0.197577

23

Selection

So, the new population is:
v} = [100110110100101101000000010111001) {(v.) |
v} = [100110110100101101000000010111001] | (v3) |
v} = [001011010100001100010110011001100] | (25
v} = [111110001011101100011101000111101] (ws) |
v% = [100110110100101101000000010111001] | (w) |
vs = [110100010011111000100110011101101] (w7}
v’ = (001110101110011000000010101001000] ' (o) |
v§ = (100110110100101101000000010111001] | (&) |
v = [000001010100101001101 111011 111110] i(v))

24




Crossover

One of the important GA operators which can help us to search the
corresponding space is Crossover:
In crossover procedure there are two steps:
1. Define the crossover rate (p.) to select the chromosomes for crossover.
2. Choose the crossover method (e.g. one-cut-point) and generate the
new chromosomes.

In the last example: p, =0.25

0.6257 0.2668 0.2886 0.2951
0.1632<p, 0.5674 0.0859<p_. 0.3928
0.7707 0.5486

vs = [100110110100101101000000010111001]

v3 = [001110101110011000000010101001000] »

Crossover

Crossover methods: one-cut-point

Cutting point: a random number in [1-33] (e.g.: 17)

mm—m— e

vs = [10011011010010110 0000010101001000] 1

*********************************

| ©7 = [00111010111001100 1000000010111001]

26




Mutation

To prevent the GA of trapped in local minimum, Mutation operator is
employed. In mutation procedure the following 2 steps are important.

1. Define the mutation rate (p,,) to select genes.

2. Generate “number of genes*population size” random
numbers (r,,) and by comparing those with mutation rate
choose the corresponding genes which satisfy the following
equation to mutate (0>1 and 1->0).

rm< pm

27

Mutation

In the last example: P, = 0.01

Random_num. Bit_ position Chrom._No. Bit_No.
0.009857 105 4 6
0.003113 164 5 32
0.000946 199 7 1
0.001282 329 10 32

v} = [111110001011101100011101000111101]
1

28




The solution

In the last example: After 1000 generation, the best chromosome
is as follow and it is obtained in 419" generation.

v" = (111110000000111000111101001010110)
eval(v") = f(11.631407, 5.724824) = 38.818208
X1 = 11.631407

X3 =5.724824

FlxT.x3) = 38.818208

29

General Structure of G.A.

new population

selection

parents

crossover

mutation

30




Solution Space, feasible and
Infeasible space

_infeasible area

Solution space: feasible area and infeasible area.

31

G.A. for minimizing the Ackley’s
function

f(x. %) =—c.exp| ¢,

1 2 1 2
=% |—exp EZcos(c3.xj) +c.e

i=1

24

—-5<X,% <5
¢, =20
e=2.71282
c,=02

C, =27




Find a solution for Ackley’s
Function Optimization Problem

population size: 10

The G.A. parameters are set as: max. generation: 1000
Pm: 0.1
Pc: 0.3
-, . -, . xl xz
Initial conditions vy =[ 4954222, 0.169225]
(Real number encoding): v; = [-4.806207, - 1.630757]
vs = [ 4.672536, -1.867275)
—-5<X,% <5

ve=[ 1.897794, —0.196387)
vs = [-2.127598, 0.750603]
vs = [-3.832667, —0.959655)
vy = [-3.792383, 4.064608)
vs= [ 1.182745, -4.712821]
vo=[ 3.812220, -3.441115) 3
10 = [-4.515976, 4.539171)

Arithmetic Crossover

{vl {vl: =V, +(1-A)V,
v, V, =V, +(1-A)v,

where 1€[0 1]

34




Non-uniform Mutation

Mutation
V:[X11 Xk’ Xn] > V:[Xl’ Xk’

X, =X +A X —x), or x =x +A(t,x —x)

o
At y) = y.r.(1—?)

t: generation number

T: maximal generation number
r: random number [0 1]
b: degree of nonuniformity

35

G.A. solution

Evaluation

Here you can see the corresponding fitness function for parent

chromosomes:
eval(vy) = f 4954222, 0.169225) = 10.731945
eval(vy) = f(-4.806207, —1.630757) = 12.110259
eval(vs) = f( 4.672536, —1.867275) = 11.788221
eval(vs) = f( 1.897794, -0.196387) = 5.681900
eval(vs) = f(-2.127598, 0.750603)= 6.757691
eval(vg) = f(~3.832667, —0.959655) = 9.194728
eval(vy) = f(~3.792383, 4.064608) = 11.795402
eval(vg) = f( 1.182745, ~4.712821) = 11.559363
eval(vs) = f( 3.812220, -3.441115) = 12.279653
eval(v ) = f(-4.515976, 4.539171) = 14.251764

Now, we generate a sequence of random numbers:

0828211 (0.199683) 0.639149 0.620170 0.957427
0.304788 (0.058504)(0.149693) 0.326670

36




G.A. solution

So, the chromosomes v, Vg, Vg, Vg are selected for crossover

v, = [-4.806207, -1.630757] vs = [ 1.182745, ~4.712821]
Us = {—3.832667, -0.959655] vo=1 3.812220, -3.441115)

v} = [-4.444387, 1383817
v} = [-4.194488, -1.206594]

v
v

=] 3.683262, -4.521950]
=[ L311703, -3.631985]

~

Offspring

’
3
’

4

G.A. solution

Mutation:
bir_pos chrom_num variable random_num
1 6 X 0.081393
offspring v} = [~4.068506, -0.959655]

The fitness value for each offspring:

eval(v)) = f(-4.444387, -1.383817) = 11.927451
eval(vy) = f(-4.194488, —1.206594) = 10.566867
eval(vh) = f( 3.683262, ~4.521950) = 13.449167
eval(vy) = f( 1.311703, -3.631985) = 10.538330
eval(vy) = f(-4.068506, -0.959655) = 9.083240




7t Mini Project

In this project, by using of G.A. you should find the minimum point of
Ackley’s function.

39
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