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Abstract

A boundary element method based on the Laplace-transform technique is developed for transient coupled 

thermoelasticity problems of two-dimensional finite domain. The Laplace-transform method is applied to the 

time domain and the resulting equations in the transformed field are discretized using the boundary element 

method. The nodal dimensionless temperature and displacements in the transformed domain are inverted 

to obtain the actual physical quantities, using the numerical inversion of the Laplace-transform method. The 
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work is concerned with the thermal and mechanical shocks in a finite domain considering classical coupled 

theory of thermoelasticity. Elastic and thermoelastic wave creation and propagation in a finite domain and 

their effects on each other are investigated. Numerical implementations are presented and compared with 

the known data.
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1. Introduction

In recent years, considerable attention has been paid to the numerical analysis of coupled thermoelasticity 

problems, which have a wide range of applications in engineering and science. Coupled thermoelasticity 

encompasses the phenomena that describe the elastic and thermal behavior of solids and their interactions 

under mechanical and thermal loadings. Many attempts have been directed toward the solution of 

uncoupled thermoelasticity problems in steady or transient heat conduction states, but few investigations 

have been done successfully for coupled thermoelasticity problems of engineering structures. Analytical 

solutions for some dynamic problems in coupled thermoelasticity of half-space were obtained by 

Danilovskaya [1] and [2], and Strengberg and Chakravorty [3]. For some of the quasi-static problems in 

coupled thermoelasticity, Boley and Tolins [4] obtained analytical solutions; whereas Nickell and Sackman 

[5] presented approximate solutions. The boundary element method (BEM), recognized in recent years as a 

powerful tool in numerical analysis, was applied by Rizzo and Shippy [6] to the BEM solution of transient 

uncoupled problems. We may also refer to Tanaka et al. [7], and Sladek and Sladek [8]. The BEM for the 

coupled problem in thermoelasticity with numerical computation have been reported by Suh and Tosaka [9], 

Ishiguro and Tanaka [10], and Dargush and Banerjee [11]. Suh and Tosaka used the Laplace transform, 

while Ishiguro and Tanaka proposed a BEM based on the time-stepping approximation of time derivatives. 

Dargush and Banerjee presented a BEM solution implementing a reciprocal theorem for quasi-static 

poroelasticity or thermoelasticity problems of steady-state thermoelasticity problems.

Hector and Kim [12] investigated transient temperature distribution in a two-dimensional isotropic medium 

using the hyperbolic heat conduction model for an extremely short time period and showed dissipating 

energy upon reflection at the boundaries. Wagner [13] presented the fundamental matrix of the system of 

partial differential operator that governs the dynamic behavior of heat and strain in elastic medium by 

simple definite integrals and power series in one dimension. Chen and Dargush [14] used a BEM for 

transient and dynamic problems in generalized thermoelasticity in a half-space by using the Laplace-

transform method. Hosseini Tehrani and Eslami [15] showed the coupling effects in natural frequencies, 

temperature distribution, and resonance amplitudes in a time harmonic problem by BEM.

Recently, the authors presented a general overview of the problem of generalized coupled thermoelasticity 

in finite domain using the Laplace-transform method in time domain. The aim of the paper was to establish 

BOUNDARY
Encyclopedia of

STRUCTURE
FREQUENCIES
Encyclopedia of

3.02 -
Comprehensive Structural

5.19 -
Comprehensive

TRANSDUCERS
Encyclopedia of

Page 2 of 14ScienceDirect - Engineering Analysis with Boundary Elements : BEM analysis of thermal...

10/19/2011http://www.sciencedirect.com/science/article/pii/S0955799799000636



(1)

(2)

(3)

(4)

their mathematical modeling and to study the main differences between the response of the solution 

domain under thermal shock loading alone for different coupled thermoelastic assumptions. The classical 

coupled thermoelasticity (CCT), versus the Lord–Shulman (LS) and Green–Lindsay (GL), models were 

checked and the result were compared. Due to the vast knowledge inherent in the problem, it is intended to 

investigate each model, i.e. CCT, LS, and GL models, separately. In the comprehensive study of each of 

these individual models the behavior of the model under thermal shock loading versus the mechanical 

shock loading is studied. The behavior of the displacement, temperature, and stress distribution by time 

and the wave fronts for two different loadings are discussed. The very interesting conclusion drawn from 

this comprehensive study is the magnitude of the wave fronts produced by each type of loadings compared 

to the uncoupled theory. The result of this paper is further improved using a quadratic boundary element 

formulation, unlike the paper in Hosseini Tehrani and Eslami [16] which is based on constant element 

formulation.

In this paper, a Laplace-transform boundary element method is developed for the dynamic problem of 

coupled thermoelasticity. The boundary element formulation for dynamic coupled thermoelasticity problems 

in two-dimensional finite domain is presented and a single heat excitation is used to derive the boundary 

element formulations. Aspects of numerical implementation are discussed. This implementation permits the 

solution of transient dynamic coupled problems, while requiring only surface discretization. Temperature 

and traction loading is used to show conceptually what is involved in the coupled theory of thermoelasticity. 

The thermo-mechanical waves production and propagation are investigated and the influence of coupling 

parameter in stress, temperature, and displacement distribution is discussed.

The important features of this paper compared to the previous publications of the authors and other related 

papers are the considerations of the higher order boundary element formulation, the interaction of the 

mechanical and thermal shock loads in the stress distribution around the wave front, and the unique 

treatments of the problem in finite space and time domain. These are discussed in 5 and 6. Throughout this 

paper, the summation convention on repeated indices is used. A dot indicates time differentiation and the 

subscript i after a comma shows the partial differentiation with respect to xi (i=1,2).

2. Governing equations

A homogeneous isotropic thermoelastic solid is considered. In the absence of body forces and heat flux, 

the governing equations for the dynamic coupled thermoelasticity in the time domain can be written as 

follows:

where λ, µ, ui, ρ, T, T0, k, γ and ce are Lame's constants, the components of displacement vector, density, 

absolute temperature, reference temperature, conductivity, stress–temperature modulus and specific heat, 

respectively. It is convenient to introduce the dimensionless variables as follows:

where α=k/ρceC1 is the dimensionless unit length and  the velocity of propagation 

of the longitudinal wave. (1) and (2) take the form (dropping the hat for convenience)
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(5)

(6)

(7)

(8)

(9)

(10)

Transferring (4) and (5) to the Laplace domain yields

(6) and (7) are rewritten in matrix form as

For the two-dimensional domain, the operator Lij reduces to

where Di=∂/∂xi (i=1,2) and ∆ denotes the Laplacian. The boundary conditions are assumed to be as follows:

where  and q ̄ are the specified displacement, traction, temperature, and heat flux vector on the 

boundary.

3. Boundary integral equation

In order to derive the boundary integral problem, we start with the following weak formulation of the 

differential equation set (8) for the fundamental solution tensor 
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(11)

(12)

(13)

(14)

(15)

(16)

(17)

After integrating by parts over the domain and taking a limiting procedure approaching the internal source 

point to the boundary point, we can obtain the following boundary integral equation:

where Uα=uα (α=1,2) and U3=T, and Ckj denotes the shape coefficient tensor. The kernel  in Eq. (11) 

is defined by

Here the fundamental solution tensor Vjk must be determined as the tensor which satisfies the differential 

equation:

where lij is the adjoint operator of Lij in Eq. (8) and is given by:

4. Fundamental solution

In order to construct the fundamental solution, we put the fundamental solution tensor  of Eq. (13) in the 

following potential representation by using the transposed co-factor operator µij of lij and scalar function Φ∗

[17]:

After substitution of Eq. (14) into Eq. (13), we obtain the following differential equations:

where

and hi
2 are
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(18)

(19)

(20)

(21)

Here, h1 is the longitudinal wave velocity, h2 the thermal wave velocity, and h3 the rotational wave velocity; 

and

where K0 is the modified Bessel function of second kind and zero order. The fundamental solution tensor 

 for the two-dimensional domain is found as follows:

where

and

where K0, K1 and K2 are the modified Bessel functions of second kind and zero, first, and second order, 

respectively.

In order to solve numerically the boundary element integral equation (11), the standard boundary element 

procedure may be applied. When transformed numerical solutions are specified, transient solutions are 

obtained using an appropriate numerical inversion technique. In this paper, the method presented by 

Durbin [18] is adopted for this numerical inversion.

5. Results and discussion

To compare the two-dimensional results of the method presented in this paper with the results of the 

available data, coupled thermoelasticity of a half-space is considered. The boundary element solution and 

the analytical solution of the coupled and uncoupled thermoelasticity of a half-space are given by Chen and 

Dargush [14] and Sternberg and Chakravorty [3], respectively. Both solutions are based on the Laplace-

transform method.

To model a half-space subjected to thermal shock, a square plate subjected to heating at one edge with a 

step function for the temperature rise is considered (Fig. 1). The plate is thermally isolated and is traction 

Page 6 of 14ScienceDirect - Engineering Analysis with Boundary Elements : BEM analysis of thermal...

10/19/2011http://www.sciencedirect.com/science/article/pii/S0955799799000636



free at the other three edges. The results are obtained along the axis of symmetry of the plate (the x-axis). 

The plate length is considered 10 (non-dimensional), and the results are obtained at x=1 (non-dimensional). 

With this l/x ratio, finite domain's results have very good agreement with the half-space problem at the early 

stages of thermal shock application. Fig. 2, Fig. 3 and Fig. 4show a comparison of the dimensionless 

temperature, axial displacement, and axial stress at dimensionless length x=1 (which is the location of the 

elastic wave front at the non-dimensional time t=1). The results are plotted for the analytical solution [3], the 

boundary element solution [14], and the present results for different coupling parameters. The case of C=0 

corresponds to the uncoupled solution. The coupled results are presented for C=1 to match the results of 

Chen and Dargush [14]. This value is unrealistically high for the material of interest. It is seen that the axial 

displacement, temperature, and axial stress results of the presented paper have good agreement with the 

analytical and boundary element solutions for the uncoupled and coupled cases.

 

Full-size image (2K)

Fig. 1. 

A square plate subjected to thermal loading.

 

Full-size image (9K)

Fig. 2. 

Comparison of the dimensionless temperature at x=1.

 

Full-size image (10K)

Fig. 3. 

Comparison of the dimensionless axial displacement at x=1.
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(22)

(23)

(24)

Full-size image (8K)

Fig. 4. 

Comparison of the dimensionless axial stress at x=1.

Now, consider a square plate of isotropic and homogeneous material. The dimensionless size of the plate 

is l=10, and is of unit thickness, as shown in Fig. 5. The mechanical and thermal boundary conditions are

where τi are the traction components. The edge x=0 is kinematically free and thermally exposed to a 

temperature or pressure shock with the known equation

where t is the dimensionless time. When thermal shock is applied to the edge x=0, τi=0 on x=0. 

Temperature shock is in the form of heat input (Fig. 6), and pressure shock is applied in the positive x-

direction. Three cases of loadings are considered:

1. Thermal shock alone: The temperature shock of Eq. (23) is applied to the edge x=0. We consider the 

uncoupled equations (C=0) and study the accuracy of the boundary element solution by assuming the 

constant and quadratic elements. The boundary of the plate is divided into 40 and 20 number of 

elements for the constant and quadratic elements, respectively. Fig. 7, Fig. 8 and Fig. 9show the 

comparison of the temperature T, axial displacement u, and the axial stress σxx along the x-axis at 

dimensionless time t=3 and t=6. The figures show that the constant elements over-estimates the 

temperature distribution especially for the longer x-values and under-estimate the x-values axial 

displacement and the stress distribution. It is clearly shown that the constant elements approach is not 

capable to represent the sharp variation of stress near the free edge at x=0, and its error in temperature 

distribution increases with the increase of the distance from the free edge x=0, where the temperature 

shock is applied. We now consider the coupled thermoelastic equations and with the quadratic element 

resolve the same problem. Fig. 10shows the temperature distribution along the x-axis for t=3 and 6. At 

larger times, the temperature curve stays at higher values at larger x-values, due to the overall larger 

heat input. Fig. 11is the distribution of the axial displacement along the x-axis at t=3 and t=6 for 

uncoupled (C=0) and coupled (C=0.1) equations. The coupled solution estimates lower curves for u with 

the wave fronts at t=3 and t=6. The curves start with compression at distance closer to the edge x=0, and 

tensile at over x-values. Fig. 12is the distribution of the axial stress along the x-direction. The wave fronts 

for stress at time t=3 and t=6 are clearly shown in the figures, while the coupled solution underestimates 

the peak stress values. Due to unloading axial compression stress at distances close to the edge x=0, is 

developed.
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Full-size image (8K)

Fig. 7. 

Comparison of the dimensionless temperature at middle of the plate for temperature loading.

 

Full-size image (8K)

Fig. 8. 

Comparison of the dimensionless axial displacement at middle of the plate for temperature loading.

 

Full-size image (8K)

Fig. 9. 

Comparison of the dimensionless axial stress at middle of the plate for temperature loading.

 

Full-size image (8K)

Fig. 10. 

Comparison of the dimensionless temperature at middle of the plate for temperature loading.
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Full-size image (8K)

Fig. 11. 

Comparison of the dimensionless axial displacement at middle of the plate for temperature loading.

 

Full-size image (8K)

Fig. 12. 

Comparison of the dimensionless axial stress at middle of the plate for temperature loading.

 

2. Pressure shock alone: The pressure shock of Eq. (24) is applied to the edge x=0 in the positive x-

direction, and the coupled solution with quadratic elements are considered. Fig. 13shows the 

temperature distribution of the coupled solution for C=0.1 at times t=3 and t=6. Due to the coupled effect, 

even though the mechanical traction is applied, temperature rise is expected. The magnitude of the 

temperature distribution is, however, small. As is shown in Fig. 13, the peak of the temperature 

distribution curve is moved with the peak of the compressive stress along the x-axis. This phenomenon is 

observed due to the temperature induced by compressive stress as a result of the pressure shock. Fig. 

14is the distribution of the axial displacement along the x-axis at t=3 and t=6 for uncoupled (C=0) and 

coupled (C=0.1) equations. The coupled solution estimates lower values for u. The wave fronts at t=3 

and t=6 are clearly shown in the figure. Fig. 15shows the distribution of the axial stress along the x-axis. 

The stress wave front at t=3 and 6 is clearly observed. The coupled solutions are underestimated. The 

effect of the coupling is more evident at larger times.

 

Full-size image (8K)

Fig. 13. 

Comparison of the dimensionless temperature at middle of the plate for traction loading.
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Full-size image (8K)

Fig. 14. 

Comparison of the dimensionless axial displacement at middle of the plate for traction loading.

 

Full-size image (7K)

Fig. 15. 

Comparison of the dimensionless axial stress at middle of the plate for traction loading.

 

3. Thermal and pressure shock in combination: Now it is assumed that the mechanical pressure and 

temperature of (23) and (24) are applied simultaneously at the edge x=0. The axial displacement, 

temperature, and the axial stress along the x-axis are shown in Fig. 16, Fig. 17 and Fig. 18. A close 

study of the curves indicate that the results are the superimposed results of the cases (1) and (2) above, 

as expected. The interaction of the mechanical and thermal shock loads is shown to result into about 

50% reduction in the compressive stress around the stress wave front. This can be verified by the 

comparison of Fig. 12 and Fig. 15 with Fig. 18.

 

Full-size image (8K)

Fig. 16. 

Comparison of the dimensionless temperature at middle of the plate for temperature and traction 

loading.
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Full-size image (8K)

Fig. 17. 

Comparison of the dimensionless axial displacement at middle of the plate for temperature and 

traction loading.

 

Full-size image (7K)

Fig. 18. 

Comparison of the dimensionless axial stress at middle of the plate for temperature and traction 

loading.

 

 

Full-size image (3K)

Fig. 5. 

A square plate subjected to thermal loading.

 

Full-size image (5K)

Fig. 6. 

Pattern of thermal loading.
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6. Conclusions

The conclusions of the paper may be expressed in the following areas:

1. Due to the short time periods of the applied mechanical and thermal shocks, the study of the coupled 

thermoelastic problems is critical at very short time periods after the shock applications. In this paper a 

hybrid BEM with Laplace transform in time domain is used and the structure behavior under coupled 

thermoelastic loading is studied at very small times without any need for the discretization of the domain. 

2. The principal solution required for the boundary element formulation is derived for the coupled 

thermoelastic field. 

3. The thermomechanical coefficient for the material under study is C=0.01. The reason to select C=0.1 is 

to clearly show the difference between the two theories. 

4. The natural frequency of the two-dimensional domain considered for the example problem is much larger 

than the shock time period. As the result, when shocks are applied and removed, the after shock stress 

vibrations are incurred in the plate, as seen in Fig. 12, Fig. 15 and Fig. 18. 

This paper is aimed to study the behavior of the plate under mechanical and thermal shocks. While the 

formulations are derived for a real two-dimensional finite domain, the results in this paper are reported for 

small time duration. Therefore, the wave reflections are not observed in the resulting figures. Since the 

importance of the coupled thermoelastic solutions are at short time periods after the shock applications, the 

response of the plate is obtained at early stages of the shock loads. However, time may be advanced as 

much as required and the behavior of the system may be studied at larger times [16].
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